Document Number: P1448R0

Date: 2019-1-20

Audience: EWG

Reply-to: Nathan Burgers nburgers@bloomberg.net

Simplifying Mixed Contract Modes

Abstract

The working draft for C++20 (N4791) provides conditional support for program
translation where the contract build level need not be the same for all translation
units. The current wording requires that the contract of a function be checked
according to the build level in each translation unit where it is odr-used or
defined. This can lead to surprising results.

Contents

The Background

The Problem

The Proposed Solution
The Downside
References

GU o=

The Background

According to the wording in (N4791) [decl.attr.contract.check]/3, which states:

A translation may be performed with one of the following build
levels: off, default, or audit. A translation with build level set
to off performs no checking for any contract. A translation with
build level set to default performs checking for default contracts.
A translation with build level set to audit performs checking for
default and audit contracts. If no build level is explicitly selected,
the build level is default. The mechanism for selecting the build level
is implementation-defined. The translation of a program consisting
of translation units where the build level is not the same in all
translation units is conditionally-supported. There should be no
programmatic way of setting, modifying, or querying the build level
of a translation unit.


mailto:nburgers@bloomberg.net
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4791.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4791.pdf

Throughout this document, we will refer to a program translation where all
translation units have the same build level as a homogeneous build, and a program
translation where translation units need not all have the same build level as a
heterogeneous build.

Where translations with heterogeneous build levels are supported, each invocation
of a function having contract preconditions and postconditions must check those
conditions according to the build level of the translation unit that contains
the call site. Additionally, translation units that contain a definition of such a
function must check its contract conditions according to their own build modes,
respectively.

The Problem

As an example of how this may lead to undesirable situations, suppose one is
compiling a program that consists of two modular translation units (according
to P1103R2), TU1 and TU2, which are defined the following way:

// Translation Unit 1

export module foo;

export int f(int x) [[expects audit: x > 0]1;
module :private;

int f(int x) [[expects audit: x > 0]] { return x; }

// Translation Unit 2
import foo;
int main() { return f(-1); }

Notice that the definition of the function £ will only be translated in T'U1, but
that f is odr-used in TUZ2. The translation of the function definition in T'U1 is
required to check the contract according to the build level for its translation,
and the use of £ in TU2 is required to check the contract according to the build
level of its own translation.

In this example, whether main will invoke the violation handler depends on the
build levels of both TUI and TU2. The set of possible build level configurations
and their effect on whether the violation handler is invoked are enumerated
below:


http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1103r2.pdf

TU1 Build Level TU2 Build Level Contract Violation Handler is Invoked

off off no
off default no
off audit yes
default off no
default default no
default audit yes
audit off yes
audit default yes
audit audit yes

Whether or not the violation handler is invoked when this program is run is
determined by the combination of the build modes of each of its translation
units. Reasoning about this behavior is unnecessarily complex.

The Proposed Solution

The proposed solution is to define a single build level that is to be used for the
contract conditions of a given function, regardless of the build level of translation
units that invoke it. This build level will be the build level of the translation
unit that contains the function’s definition.

For an inline function D, the working draft already specifies,
(N4791) [basic.def.odr]/12.6:

if D invokes a function with a precondition, or is a function that
contains an assertion or has a contract condition (9.11.4), it is
implementation-defined under which conditions all definitions of
D shall be translated using the same build level and violation contin-
uation mode; ...

Which is compatible with this proposed solution.

Note that this is compatible with the semantics of a homogeneous build. In
a homogeneous build, the build level of the translation unit containing the
function’s definition is the same as the build level of any translation unit where
it is used.

The Downside

If the proposal is adopted, implementations have reduced freedom to decide how
to lay out contract checking code in a heterogeneous build.


http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4791.pdf

References

[N4791] Richard Smith, Working Draft, Standard for Programming Language
C++

http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2018/n4791.pdf

[P1103R2] Richard Smith, Merging Modules
http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2018/p1103r2.pdf



	Simplifying Mixed Contract Modes
	Abstract
	Contents
	The Background
	The Problem
	The Proposed Solution
	The Downside
	References


