
constexpr C++ is not constexpr C
Document #: P1447R0, ISO/IEC JTC1 SC22 WG21
Date: 2019-01-21
Project: Programming Language C++

SG7, Evolution, Library Evolution
Reply-to: Matúš Chochlík

<chochlik@gmail.com>
Axel Naumann
<axel@cern.ch>
David Sankel
<dsankel@bloomberg.net>

Contents
1 Introduction 1

2 Members or Free Functions? Syntax and Type Safety 1

3 Performance 3
3.1 Stateless . 3
3.2 Stateful . 5
3.3 Conclusion . 5

4 Summary 6

5 References 6

1 Introduction

Reflection is moving towards constexpr value-based notation, becoming the first of its kind in the C++
standard library. We as a community must decide if we want constexpr value-based libraries to follow
best-practice, C++ design patterns in spite of compile-time performance concerns. The authors believe
that constexpr libraries designed as a collection of C-style free functions without strong types would be
a disservice to the community, and be at variance with C++’s core values. We provide explanations and
numbers to support this position.

2 Members or Free Functions? Syntax and Type Safety

The discussion boils down to the following pseudo-Tony-Table:

1

mailto:chochlik@gmail.com
mailto:axel@cern.ch
mailto:dsankel@bloomberg.net

Monotype/Free-function style [P1240R0] Rich types/OO-style [P0953R2]

meta::info str_m = reflexpr(string);
vector<meta::info> mems

= reflect::get_members(str_m, is_type);
meta::info first = mems[0];
string name = meta::name_of(first);

reflect::Record str_m = reflexpr(string);
vector<reflect::RecordMember> mems

= str_m.get_member_types();
reflect::RecordMember first = mems[0];
string name = first.name();

The object-oriented, type-safe, programming style remains a software engineering best practice to this day.
Many of the newest, fanciest libraries employ these patterns as they strive for for clean, conceptually-simple
value semantics. Thanks to C++, software engineers have access to these quality libraries.

Back in the 90s, compilers were incredibly SLOW compared to C. Even today, compiling C++ is still slower
than compiling C. Yet, C++ survives and thrives. Why should we give up all the benefits of OO design
for constexpr-based libraries? Why would different arguments hold for constexpr-based libraries than for
regular ones?

The authors believe in the vendors’ capability to accelerate the relatively new constexpr compilation model
according to user demand. Our numbers below demonstrate that acceleration of constexpr compilation
might not even be needed to take advantage OO design at compile time!

One of the primary motivations for replacing the Reflection TS’s template meta-programming style [N4766]
with constexpr-based interfaces is making compile time metaprogramming more accessible. Templates
require operations to be placed to the left of their operand. Free-function-style constexpr programming
keeps this “inverse Polish notation”, while our preferred OO-style renders as readable, natural, code. The
following table demonstrates this:

Reflection-TS [N4766] Our preferred notation

using X_m = get_scope_t<
get_type_t<

reflexpr(some_var)
>

>;

auto X_m = reflexpr(some_var)
.get_type()
.get_scope();

A major bonus of C++ is type safety: you can drive a car, not a cat, and the compiler will tell you. [P1240R0]
instead suggests to tear down type safety from reflection. Instead a fundamental, opaque type is used for
almost everything. Without type safety, [P1240R0] was even forced to introduce an “invalid” state of the
untyped reflection “object”. This is used, for instance, as the result of calling get_members on reflexpr(int).

The object-oriented, type safe approach of [P0953R1] does not even offer this operation: reflexpr(int)
yields a Type not a Record, and only the latter offers the interface get_members(). This is what we are used
to (and love!) with C++.

To clarify, we could have written the first Tony Table as follows, with an implicit using namespace std::meta
and using namespace std::reflect:

2

Free-function-style [P1240R0]

template <class T>
constexpr std::string getName() {

info str_m = reflexpr(T);
if (!is_valid(str_m))

throw std::logic_error("T is invalid for reflection");
vector<info> mems = get_members(str_m, is_type);
if (mems.empty())

throw std::logic_error("Zero members");
info first = mems[0];
constexpr std::string name = name_of(first);
// handle invalid operation?
return name;

}

Our preferred OO-style

template <class T>
constexpr std::string getName() {

Class str_m = reflexpr(T);
vector<RecordMember> mems = str_m.get_member_types();
RecordMember first = mems[0];
return first.name();

}

3 Performance

During the San Diego discussion of [P0953R1] and [P1240R0], the [P1240R0] authors raised concerns about
the (compile-time) performance implications of [P0953R1]’s object-oriented notation. To measure the impact,
we have conducted two benchmarks with the clang compiler. They provide an estimate of the upper and
lower bounds of object-oriented constexpr notation’s compile-time performance penalty.

3.1 Stateless

The small benchmark [constexpr-perf-stateless] generates constexpr evaluations of 10000 functions. Each
provokes numerous instances of name lookup. The return values of all functions are “stateless” in that they
do not require context; the compiler will immediately evaluate them to a constant value.
// p0953_head.cxx
#include <array>
enum Dummy{a, b, c};

struct Enumerator {
// Using array because compile-time std::vector is not available
constexpr std::array<char, 128> name() { return {}; }
constexpr int value() { return 42; }

3

};
struct Enumeration {

constexpr std::array<Enumerator, 3> enumerators() { return {}; }
};

constexpr Enumeration reflexpr() { return {}; }
// Simulates 'reflexpr(Dummy)'

// p0953_one.cxx; cloned 10000 times, replacing '@' with 1, 2,...
template <class T>
constexpr std::array<char, 128> get_name_@(int v) {

for (Enumerator e: reflexpr(/*T*/).enumerators()) {
if (e.value() == v)

return e.name();
}
return {};

}

constexpr auto eval@ = get_name_@<Dummy>(1);

This is compared to a [P1240R0]-style set of free functions, doing the same operations.
// p1240_head.cxx:
#include <array>
enum Dummy{a, b, c};

struct Info {};

constexpr std::array<Info,3> enumerators(Info) { return {}; }
constexpr int value(Info) { return 42; }
constexpr std::array<char, 128> name(Info) { return {}; }

constexpr Info reflexpr() { return {}; }

// p1240_one.cxx
template <class T>
constexpr std::array<char, 128> get_name_@(int v) {

for (Info e: enumerators(reflexpr(/*T*/))) {
if (value(e) == v)
return name(e);

}
return {};

}

constexpr auto eval@ = get_name_@<Dummy>(1);

4

The source file generated by a concatenation of the respective ..._head.cxx and 10000 clones of its
..._one.cxx, where ‘@’ is replaced by a running number, is then compiled on a MacBook 2014, 2.5 GHz
Intel Core i7, with -fsyntax-only with
$ clang --version
Apple LLVM version 10.0.0 (clang-1000.11.45.5)
Target: x86_64-apple-darwin18.2.0
Thread model: posix

The resulting timings are

free-function, p1240 object-oriented, p0953
real 0m2.969s
user 0m2.858s
sys 0m0.100s

real 0m2.702s
user 0m2.592s
sys 0m0.101s

As one can see, the difference is within the range of “random” fluctuations.

3.2 Stateful

A more complete benchmark modifies recent clang from Wed, Jan 2, 2019, [clang-stateful] to enable a
comparison where constexpr-state is provided through compiler intrinsics. This state is then passed along
through either object-oriented of free-function coding syntax. The code to be benchmarked [constexpr-perf-
stateful] exercises similar functionality and uses a similar setup to the code for the stateless benchmark.

free-function, p1240 object-oriented, p0953
real 0m2,674s
user 0m2,649s
sys 0m0,024s

real 0m4,020s
user 0m3,987s
sys 0m0,032s

The object-oriented approach is naive in that it uses a dedicated this pointer that needs to be evaluated to
determine the (opaque) pointer value to the AST-node. On an Intel Core i5-2400 CPU @ 3.10GHz, this extra
step costs about 50% in performance compared to the free function approach, where the (opaque) pointer
value to the AST-node is the Info node itself. A smarter implementation of the object-oriented style could
map the this pointer of the constexpr object to the internal AST-node for reflection objects, alleviating
most of the overhead.

3.3 Conclusion

We can show that the lookup performance is approximately equal. On the other hand, the cost to pass the
context / AST-node pointers depends on the implementation. Be believe that this can be optimized in several
ways. Our benchmarks thus indicate that the minimum overhead of the object-oriented coding style is 0%,
and the maximal overhead is 48%.

Note that this benchmark is purely synthetic; code that uses reflection operations in about 100% of its code
will be extremely rare. The actual overhead in real code will thus be only a fraction of whatever overhead
comes from object-oriented programming style.

5

4 Summary

Object-oriented design is simple to reason about and easy to write. It fits naturally into C++ and its focus
on values, type-safety, and conceptual abstractions.

A collection of free functions suffers similar notational issues as template meta-programming does, where the
operation is followed by the object it is operating on: at(coll, idx) instead of coll.get(idx). In San
Diego, many agree that object-oriented constexpr-libraries are preferred in principle.

This paper shows that the benefits of such an object-oriented constexpr-library is well worth the (small)
cost, making [P0953R2] the preferred choice for a C++ standard reflection library.

5 References

[clang-stateful] Matúš Chochlík. 2019. Clang-modifications for a rudimentary, naive stateful reflection
implementation.
https://github.com/matus-chochlik/clang/tree/reflexpr

[constexpr-perf-stateful] Matúš Chochlík. 2019. Stateful OO-constexpr benchmark.
https://github.com/matus-chochlik/mirror/tree/develop/benchmark/constexpr-perf

[constexpr-perf-stateless] Axel Naumann. 2019. Stateless OO-constexpr benchmark.
https://bitbucket.org/karies/constexpr-perf/src/master/

[N4766] 2018. Working Draft, C++ Extensions for Reflection.
https://wg21.link/n4766

[P0953R1] Matúš Chochlík, Axel Naumann, and David Sankel. 2018. constexpr reflexpr.
https://wg21.link/P0953R1

[P0953R2] Matúš Chochlík, Axel Naumann, and David Sankel. 2019. constexpr reflexpr.
https://wg21.link/P0953R2

[P1240R0] Andrew Sutton, Faisal Vali, and Daveed Vandevoorde. 2018. Scalable Reflection in C++.
https://wg21.link/P1240R0

6

https://github.com/matus-chochlik/clang/tree/reflexpr
https://github.com/matus-chochlik/mirror/tree/develop/benchmark/constexpr-perf
https://bitbucket.org/karies/constexpr-perf/src/master/
https://wg21.link/n4766
https://wg21.link/P0953R1
https://wg21.link/P0953R2
https://wg21.link/P1240R0

	Introduction
	Members or Free Functions? Syntax and Type Safety
	Performance
	Stateless
	Stateful
	Conclusion

	Summary
	References

