
P1433R0: Compile Time Regular Expressions
ISO/IEC JTC1 SC22/WG21 - Programming Languages - C++

Author: Hana Dusíková <hana.dusikova@avast.com>
Audience:

Unicode Study Group (SG16)
Library Evolution Working Group Incubator (LEWGI)

Intended Shipping Vehicle: C++23

TL;DR
Manipulating regular expressions (RE) in C++ is verbose and hard. This proposal discuss

possibility how to solve it with a library solution which can check the pattern during the
compilation and generate very efficient assembly. This library (CTRE, Compile Time Regular
Expressions) is already implemented and very warmly welcomed.

Motivation
The current std::regex design and implementation are slow, mostly because the RE pattern is

parsed and compiled at runtime. Users often don’t need a runtime RE parser engine as the
pattern is known during compilation in many common use cases. I think this breaks C++’s
promise of “don’t pay for what you don’t use.”

If the RE is known at compile time, the pattern should be checked during the compilation. The
design of std::regex doesn’t allow for this as the RE input is a runtime string and syntax errors
are reported as exceptions.

Because of all these problems and limitations users instead turn to non-standard libraries.

Proposed API
In the CTRE library, the pattern is passed as a class non-type template parameter (P0732):

// match whole input and return captures
template <fixed_string Pattern> constexpr impl-specified match(auto && subject) noexcept;

// return iterable range where each elements is matched part of subject
template <fixed_string Pattern> constexpr impl-specified multi_match(auto && subject) noexcept;

// search for pattern match somewhere in subject (not bound to whole subject)
template <fixed_string Pattern> constexpr impl-specified search(auto && subject) noexcept;

// search and replace subject, can throw as it can allocate (currently not implemented in CTRE)
template <fixed_string Pattern, fixed_string Replacement> constexpr impl-specified replace(auto &&

subject) noexcept(false);

mailto:hana.dusikova@avast.com
https://github.com/hanickadot/compile-time-regular-expressions
https://wg21.link/P0732

Return type
The return type is tuple-like implementation specific struct which is implicitly convertible to bool,

appropriate std::basic_string_view (depending on char type of subject), and explicitly to
std::string.

It also provides std::get support and thereby structured bindings.

If (auto [re, c1, c2] = match<”([0-9]+),([0-9]+)”>(subject); re) {

return {std::string_view(c1), std::string_view(c2)};
}

Using of Template Arguments
There are proposals for the language (Parametric Expressions, P1221) which enables the

compile-time pattern to be passed as a function argument instead of a template argument. This
would allow for a more natural syntax:

auto m = match(”([0-9]+),([0-9]+)”, subject);

Implementation & Usage Experience
This proposal is based on the CTRE library, which is implemented in both C++17 and C++20

with class non-type template parameters. It was presented at CppCon 2018.
The library generates very nice assembly and in most benchmarks is able to beat every other

common RE library (more in Runtime Benchmark section).
Currently, the library supports PCRE derived syntax. However, we should use only Unicode or

ECMAScript RE syntax with proper Unicode support, as both specifications are well
standardized. C++11’s std::regex is using multiple dialects: ECMA, Posix, awk, ...

Compile Time
For backtracking implementation, the compilation time of a RE pattern linearly depends on the

length of a string (high-level complexity, not taking into account internal implementations of
constexpr functionality in a compiler.)

For DFA based implementation the compilation time is exponential with RE complexity
(non-determinism in the initial FA).

However, it should not be a problem, as most REs are short. Also for most usages (with only a
few RE in a translation unit) compiling with CTRE library is actually quicker than with std::regex.

Runtime Benchmarks
Current CTRE implementation is using a backtracking matching so that the performance can be
strongly influenced by poorly designed RE pattern. In typical scenarios, the performance is
similar or better than existing high-performance RE implementations.
The following table shows grep-like benchmark scenario of a CSV file (with long lines and file
length appr. 1.3GB). Tested pattern is: ([0-9]{4,16})?[aA]

Table 1: GNU based system (gcc)

https://wg21.link/P1221
https://www.youtube.com/watch?v=QM3W36COnE4
https://gcc.godbolt.org/z/g4VjyG

Implementation Time [sec] Assembly generated [B]
GNU egrep (baseline) 4.927 N/A
CTRE 3.172 19896
PCRE2 17.403 19872
std::regex (libstdc++) 33.585 213280
RE2 3.759 19704
boost::regex 22.692 183048

Table 2: MacOS (clang)
Implementation Time [sec] Assembly generated [B]
BSD egrep (baseline) 21.92 N/A
CTRE 11.11 29976
PCRE2 16.92 25580
std::regex (libc++) 1655 (28 minutes) 113284
RE2 10.35 25512
boost::regex 20.37 108900

Possible Approaches
● Introduce CTRE-like library functionality into the standard library.
● Make std::regex constexpr (P1149)
● Don’t do anything (and continue recommending RE implementation outside of the

standard if users want performance)

References
[CTRE] Hana Dusíková. Compile Time Regular Expressions library
https://github.com/hanickadot/compile-time-regular-expressions

[CTRE-talk] Hana Dusíková. Compile Time Regular Expressions library (CppCon 2018 talk)
https://www.youtube.com/watch?v=QM3W36COnE4

[P0732] Jeff Snyder, Louis Dionne: Class Types in Non-Type Template Parameters
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0732r2.pdf

[P1221] Jason Rice: Parametric Expressions
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1221r0.html

[P1149] Antony Polukhin: Constexpr regex
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1149r0.html

[UnicodeRe] Unicode® Technical Standard #18: Unicode Regular Expressions
http://unicode.org/reports/tr18/

[ecmaRE] ECMAScript® 2018 Language Specification
https://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

http://wg21.link/P1149
https://github.com/hanickadot/compile-time-regular-expressions
https://www.youtube.com/watch?v=QM3W36COnE4
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0732r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1221r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1149r0.html
http://unicode.org/reports/tr18/
https://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

