
Document P1413R2

Date 2019-07-26

Author CJ Johnson <johnsoncj@google.com>

Audience Library Evolution Working Group (LEWG), Library Working Group (LWG)

Deprecate std::aligned_storage and std::aligned_union

Changes over Revision 1

Fixed incorrect change log

Minor edits

At Cologne 2019, LEWG-I voted to forward the paper to LEWG

SF F N A SA

8 5 1 0 0

Changes over Revision 0

Changed the title (Previously: "A safer interface for std::aligned_storage") and removed std::aligned_storage_for

Merged the content from "Additional usage" into "Existing usage" and removed the "Additional usage" section

Added "Suggested replacement" section

Added "Wording" section

Major edits

At Kona 2019, LEWG-I voted to update the paper by removing the new proposed interface (std::aligned_storage_for) and
instead deprecating std::aligned_storage and std::aligned_union

Deprecate std::aligned_storage ?

Unanimous Consent

SF F N A SA

-- - - - --

Deprecate std::aligned_union ?

SF F N A SA

10 0 1 0 0

Preface

For simplicity, this paper will use the term aligned_* to refer to all of the types that fall under the same category. This includes
standard types such as std::aligned_storage and std::aligned_union , their *_t counterparts, Boost's many
implementations from which the standard types were inspired and other utilities such as absl::aligned_storage_t [1] and
folly::aligned_storage_for_t [2].

mailto:johnsoncj@google.com

Additionally, std::aligned_* is used to specifically refer to those from the standard.

Proposal

std::aligned_* should be deprecated in the standard to make clear to users of the standard library that they are not to be used
and may be removed in the future.

Background

aligned_* are harmful to codebases and should not be used. At a high level:

Using aligned_* invokes undefined behavior (The types cannot provide storage.)

The guarantees are incorrect (The standard only requires that the type be at least as large as requested but does not put an
upper bound on the size.)

The API is wrong for a plethora of reasons (See "On the API".)

Because the API is wrong, almost all usage involves the same repeated pre-work (See "Existing usage".)

On the API

std::aligned_* suffer from many poor API design decisions. Some of these are shared, and some are specific to each. As for
what is shared, there are three main problems:

Using reinterpret_cast is required to access the value

::type is not automatically resolved

There is no upper bound on the size of ::type

The first of these is pretty self explanatory. There is no .data() or even .data on std::aligned_* instances. Instead, the API
requires you to take the address of the object, call reinterpret_cast<T*>(...) with it, and then finally indirect the resulting
pointer giving you a T& . Not only does this mean that it cannot be used in constexpr, but at runtime it's much easier to
accidentally invoke undefined behavior. reinterpret_cast being a requirement for use of an API is unacceptable.

The second of these problems has already been somewhat addressed with the creation of std::aligned_storage_t and
std::aligned_union_t in C++14, but that doesn't stop programmers from making mistakes. Writing
std::aligned_storage<t_size, t_align> t_storage; looks and feels right, but it's very wrong (missing typename and
::type). In fact, because of the first problem mentioned, it's easy to not catch this second problem when it happens.
reinterpret_cast will do what you tell it to do, even if that means taking a type that is the wrong size

(std::aligned_storage<t_size, t_align>) and reading it through its address as if it was the type you intended
(std::aligned_storage<t_size, t_align>::type).

The third is more of a defect in the standard, but it applies to both types and thus should be noted here. The language of the
standard only says ::type needs to be at least as big as requested. It fails to actually limit what the size can be. This has the
potential to result in more memory being used than is needed (especially for arrays of std::aligned_* where the extra unused
bytes are multiplied by the number of elements in the array).

As for what specifically plagues std::aligned_storage , there are two key problems:

The template has no type arguments

The second template argument is defaulted

std::aligned_storage takes in, as nontype template parameters, two arguments of size_t . These denote the size of the
storage and the alignment of the storage. Except in very rare cases, the alignment parameter should always be in lock-step with
the size parameter. If you're passing in sizeof(T) , you should be passing in alignof(T) (see "Existing usage"). In fact, this is
so important, Facebook released folly::aligned_storage_for_t [2] for this exact purpose.

Not only are the template arguments not what they probably should be, but the second one actually has a default value. Nothing in
the compiler is going to stop you from writing std::aligned_storage_t<sizeof(T)> . The second parameter, the alignment, has
an implementation-defined default value that may or may not be sufficient for T (it's not required to support over-aligned types!). If
the programmer happens to know that the default is correct for their use-case, then I suppose this is ok. But quite frankly, allowing
the alignment parameter to be silently incorrect is not good API design and was a mistake.

The problems specific to std::aligned_union are less awful, but still not desirable:

The leading size_t parameter is pointless

Size and alignment deduction is inconsistent with std::aligned_storage

std::aligned_union takes in its template parameters a single size_t and then a variadic list of types. From there, it deduces
the size and alignment of every type and then uses the maximum of those values for the actual storage. In addition to deducing the
max size of the types provided, the leading size_t is the minimum size for the storage. Even if all types are smaller, the
std::aligned_union will be no smaller than that provided minimum.

The thing is, needing a minimum size is uncommon, at best. Most of the usage is of the form std::aligned_union_t<0, Ts...> .
Having to pass in a 0 just to meet the API is strange. If readers happen to have context and have worked with aligned_* before,
they can likely understand why the author put it there. But if they're new to these types and aren't familiar with the API of
std::aligned_union , it is puzzling to see. It isn't immediately clear what the programmer was intending. Do they want a zero-

sized storage object or are they simply passing in a value to meet the awkward API?

Additionally, deducing the size and alignment automatically is nice, but it's inconsistent with std::aligned_storage .
std::aligned_* types should almost certainly not have such radically different APIs. It leads to interesting uses such as
std::aligned_union_t<0, T> t_storage; (passing in only a single type). Did the author use std::aligned_union because of

the automatic size and alignment deduction? Or did they forsee a future where t_storage would be used to hold one of many
possible types and so far only added the first one? Since the APIs of std::aligned_* are different, the intent of the author in this
example becomes unclear.

Existing usage

NOTE: For this section, aligned_* will just refer to std::aligned_storage and friends (not std::aligned_union).

aligned_* types are niche, being most useful for container types provided by utility libraries. Thus, to find how they are used in
practice, data was scraped from the implementation details of Folly, Boost and Abseil.

Across these three libraries, there are 95 distinct uses. Nearly 73% (69/95) of those uses are of the form
aligned_storage<sizeof(T), alignof(T)> (or some alternate spelling thereof). The vast majority of aligned_* 's use is simply

repeating the same process of taking a type and deducing its size + alignment manually to meet the API. [3]

By library it's 89% (8/9) for Abseil, 58% (11/19) for Folly, and 75% (50/67) for Boost (though notably this number increases to 88%
(23/26) for Boost.Container). All three libraries slightly or overwhelmingly favor the sizeof-alignof-T pattern when using
aligned_* . [3]

https://camo.githubusercontent.com/8b9fa601965a7036f843a427f4dd3cbbce736c48/68747470733a2f2f617263686976652e666f2f42316e4e472f393933633465666663663133303538656338383838323363316462623262326239633538653433382e706e67

In addition to the main utility libraries of the world, the sizeof-alignof-T pattern appears in most of aligned_* 's usage across the
internet. The CppReference static_vector example for std::aligned_storage features the fullly spelled out version as
typename std::aligned_storage<sizeof(T), alignof(T)>::type . [4] Comments on StackOverflow, when using aligned_* ,

commonly follow the pattern, as well. [5][6][7][8] The pattern appears in wiki pages [9], blog posts [10][11][12] and in the source of
other libraries [13] and languages [14].

It seems that the reasonable conclusion to draw from this data is that the API was designed incorrectly. The primary usecase of "I
need a type that can provide storage for this T " is not being well satisfied by std::aligned_* .

Suggested replacement

The easiest replacement for aligned_* is actually not a library feature. Instead, users should use a properly-aligned array of
std::byte , potentially with a call to std::max(std::initializer_list<T>) . These can be found in the <cstddef> and
<algorithm> headers, respectively (with examples at the end of this section).

Unfortunately, this replacement is not ideal. To access the value of aligned_* , users must call reinterpret_cast on the
address to read the bytes as T instances. Using a byte array as a replacement does not avoid this problem. That said, it's
important to recognize that continuing to use reinterpret_cast where it already exists is not nearly as bad as newly introducing
it where it was previously not present.

It's reasonable to then conclude that perhaps the standard library should provide a typedef of such a byte array, making it easier to
switch. Such as this:

namespace std2 {
template <typename T>
using aligned_storage = alignas(T) std::byte[sizeof(T)];
}

Unfortunately, the alignas attribute is ignored on typedefs, since it can only be applied to objects. To demonstrate this:

template <typename T>
using unaligned_storage = std::byte[sizeof(T)];

// They're the same type!
static_assert(
 std::is_same_v<
 unaligned_storage<double>,
 std2::aligned_storage<double>
 >
);

Since users must apply alignas themselves, there doesn't seem to be much value in providing a typedef like
unaligned_storage in the standard, seeing as all it can deduce is the correct size.

With that, here are example replacement diffs in line with the suggestion of this paper:

 // To replace std::aligned_storage...

 template <typename T>
 class MyContainer {
 // [...]

 private:
- std::aligned_storage_t<sizeof(T), alignof(T)> t_buff;
+ alignas(T) std::byte t_buff[sizeof(T)];

 // [...]
 };

 // To replace std::aligned_union...

 template <typename... Ts>
 class MyContainer {
 // [...]

 private:
- std::aligned_union_t<0, Ts...> t_buff;
+ alignas(Ts...) std::byte t_buff[std::max({sizeof(Ts)...})];

 // [...]
 };

Wording

Move the entries in [meta.type.synop] for std::aligned_storage_t and std::aligned_union_t to [depr.meta.types].

Move the entries in [meta.trans.other] for std::aligned_storage and std::aligned_union to a new section under [depr]
(perhaps called [depr.meta.trans]).

References

[1] absl::aligned_storage_t

[2] folly::aligned_storage_for_t

[3] Gathered data

This data was gathered in January of 2019 for revision 0 of this paper. std::aligned_union was not part of the paper at the time,
so data about its usage was not collected. No effort was made to update the data for revision 1.

Library
Is of the form

aligned_storage<sizeof(T),
alignof(T)>?

Depends on
default

alignment?
Source

Folly YES NO HazptrHolder.h:220

Folly YES NO HazptrHolder.h:338

Folly YES NO LifoSem.h:125

Folly YES NO small_vector.h:1142

Folly YES NO Replaceable.h:640

Folly YES NO dynamic.h:782

Folly YES NO F14Table.h:567

Folly YES NO F14Policy.h:1208

Folly YES NO UnboundedQueue.h:761

Folly YES NO MPMCQueue.h:1442

Folly YES NO AtomicUnorderedMap.h:366

Folly NO YES Fiber.h:124

Folly NO YES Fiber.h:164

Folly NO YES Function.h:255

Folly NO YES PolyDetail.h:384

https://github.com/abseil/abseil-cpp/blob/b1dd425423380126f6441ce4fbb6f8f6c75b793a/absl/meta/type_traits.h#L539-L541
https://github.com/facebook/folly/blob/61a8ac33097d8e2af97e38c139895a1bd7e92a6a/folly/Traits.h#L304-L306
https://github.com/facebook/folly/blob/0244777763b0f68dd1c0989a520a4cf9266a9ade/folly/synchronization/HazptrHolder.h#L220
https://github.com/facebook/folly/blob/0244777763b0f68dd1c0989a520a4cf9266a9ade/folly/synchronization/HazptrHolder.h#L338
https://github.com/facebook/folly/blob/0244777763b0f68dd1c0989a520a4cf9266a9ade/folly/synchronization/LifoSem.h#L125
https://github.com/facebook/folly/blob/0244777763b0f68dd1c0989a520a4cf9266a9ade/folly/small_vector.h#L1142
https://github.com/facebook/folly/blob/0244777763b0f68dd1c0989a520a4cf9266a9ade/folly/Replaceable.h#L640
https://github.com/facebook/folly/blob/0244777763b0f68dd1c0989a520a4cf9266a9ade/folly/dynamic.h#L782
https://github.com/facebook/folly/blob/0244777763b0f68dd1c0989a520a4cf9266a9ade/folly/container/detail/F14Table.h#L567
https://github.com/facebook/folly/blob/0244777763b0f68dd1c0989a520a4cf9266a9ade/folly/container/detail/F14Policy.h#L1208
https://github.com/facebook/folly/blob/0244777763b0f68dd1c0989a520a4cf9266a9ade/folly/concurrency/UnboundedQueue.h#L761
https://github.com/facebook/folly/blob/0244777763b0f68dd1c0989a520a4cf9266a9ade/folly/MPMCQueue.h#L1442
https://github.com/facebook/folly/blob/0244777763b0f68dd1c0989a520a4cf9266a9ade/folly/AtomicUnorderedMap.h#L366
https://github.com/facebook/folly/blob/0244777763b0f68dd1c0989a520a4cf9266a9ade/folly/fibers/Fiber.h#L124
https://github.com/facebook/folly/blob/0244777763b0f68dd1c0989a520a4cf9266a9ade/folly/fibers/Fiber.h#L164
https://github.com/facebook/folly/blob/0244777763b0f68dd1c0989a520a4cf9266a9ade/folly/Function.h#L255
https://github.com/facebook/folly/blob/0244777763b0f68dd1c0989a520a4cf9266a9ade/folly/detail/PolyDetail.h#L384

Library
Is of the form

aligned_storage<sizeof(T),
alignof(T)>?

Depends on
default

alignment?
Source

Folly NO NO ExceptionWrapper.h:223-224

Folly NO NO small_vector.h:1154-1155

Folly NO NO F14Table.h:330-332

Folly NO NO Memory.h:109

Boost.Accumulators NO YES droppable_accumulator.hpp:249

Boost.Asio NO YES allocator.hpp:49

Boost.Beast NO NO type_traits.hpp:88-90

Boost.Container YES NO advanced_insert_int.hpp:131

Boost.Container YES NO advanced_insert_int.hpp:154

Boost.Container YES NO advanced_insert_int.hpp:291

Boost.Container YES NO advanced_insert_int.hpp:401

Boost.Container YES NO flat_tree.hpp:925

Boost.Container YES NO flat_tree.hpp:937

Boost.Container YES NO flat_tree.hpp:948

Boost.Container YES NO flat_tree.hpp:960

Boost.Container YES NO flat_tree.hpp:997

Boost.Container YES NO flat_tree.hpp:1008

Boost.Container YES NO flat_tree.hpp:1019

Boost.Container YES NO flat_tree.hpp:1030

Boost.Container YES NO node_handle.hpp:114-116

Boost.Container YES NO varray.hpp:228-231

Boost.Container YES NO varray.hpp:1072-1073

Boost.Container YES NO varray.hpp:1115-1116

Boost.Container YES NO varray.hpp:1625-1628

Boost.Container YES NO small_vector.hpp:385-386

Boost.Container YES NO tree.hpp:137-138

Boost.Container YES NO list.hpp:79

Boost.Container YES NO slist.hpp:84

Boost.Container YES NO stable_vector.hpp:150-151

Boost.Container YES NO string.hpp:176-177

Boost.Container NO NO copy_move_algo.hpp:1024-1025

Boost.Container NO NO copy_move_algo.hpp:1054-1055

Boost.Container NO NO static_vector.hpp:73

https://github.com/facebook/folly/blob/0244777763b0f68dd1c0989a520a4cf9266a9ade/folly/ExceptionWrapper.h#L223-L224
https://github.com/facebook/folly/blob/0244777763b0f68dd1c0989a520a4cf9266a9ade/folly/small_vector.h#L1154-L1155
https://github.com/facebook/folly/blob/0244777763b0f68dd1c0989a520a4cf9266a9ade/folly/container/detail/F14Table.h#L330-L332
https://github.com/facebook/folly/blob/0244777763b0f68dd1c0989a520a4cf9266a9ade/folly/Memory.h#L109
https://github.com/boostorg/accumulators/blob/b133840d2b3aa8c4bf07a60c00c5f4ff1396b45e/include/boost/accumulators/framework/accumulators/droppable_accumulator.hpp#L249
https://github.com/boostorg/asio/blob/fbe86d86b1ac53e40444e5af03ca4a6c74c33bda/test/latency/allocator.hpp#L49
https://github.com/boostorg/beast/blob/f00237cb35bcb0d3d544db4b80de38f1aba78ab0/include/boost/beast/core/detail/type_traits.hpp#L88-L90
https://github.com/boostorg/container/blob/72c7ef780143df9a343ced649588163dcffa3789/include/boost/container/detail/advanced_insert_int.hpp#L131
https://github.com/boostorg/container/blob/72c7ef780143df9a343ced649588163dcffa3789/include/boost/container/detail/advanced_insert_int.hpp#L154
https://github.com/boostorg/container/blob/72c7ef780143df9a343ced649588163dcffa3789/include/boost/container/detail/advanced_insert_int.hpp#L291
https://github.com/boostorg/container/blob/72c7ef780143df9a343ced649588163dcffa3789/include/boost/container/detail/advanced_insert_int.hpp#L401
https://github.com/boostorg/container/blob/83bb62fed3aca489e447e394f3b23c272712ecb7/include/boost/container/detail/flat_tree.hpp#L925
https://github.com/boostorg/container/blob/83bb62fed3aca489e447e394f3b23c272712ecb7/include/boost/container/detail/flat_tree.hpp#L937
https://github.com/boostorg/container/blob/83bb62fed3aca489e447e394f3b23c272712ecb7/include/boost/container/detail/flat_tree.hpp#L948
https://github.com/boostorg/container/blob/83bb62fed3aca489e447e394f3b23c272712ecb7/include/boost/container/detail/flat_tree.hpp#L960
https://github.com/boostorg/container/blob/83bb62fed3aca489e447e394f3b23c272712ecb7/include/boost/container/detail/flat_tree.hpp#L997
https://github.com/boostorg/container/blob/83bb62fed3aca489e447e394f3b23c272712ecb7/include/boost/container/detail/flat_tree.hpp#L1008
https://github.com/boostorg/container/blob/83bb62fed3aca489e447e394f3b23c272712ecb7/include/boost/container/detail/flat_tree.hpp#L1019
https://github.com/boostorg/container/blob/83bb62fed3aca489e447e394f3b23c272712ecb7/include/boost/container/detail/flat_tree.hpp#L1030
https://github.com/boostorg/container/blob/1be5cec04246413554c09273a0a39d5ee8f82477/include/boost/container/node_handle.hpp#L114-L116
https://github.com/boostorg/container/blob/72c7ef780143df9a343ced649588163dcffa3789/bench/detail/varray.hpp#L228-L231
https://github.com/boostorg/container/blob/72c7ef780143df9a343ced649588163dcffa3789/bench/detail/varray.hpp#L1072-L1073
https://github.com/boostorg/container/blob/72c7ef780143df9a343ced649588163dcffa3789/bench/detail/varray.hpp#L1115-L1116
https://github.com/boostorg/container/blob/72c7ef780143df9a343ced649588163dcffa3789/bench/detail/varray.hpp#L1625-L1628
https://github.com/boostorg/container/blob/83bb62fed3aca489e447e394f3b23c272712ecb7/include/boost/container/small_vector.hpp#L385-L386
https://github.com/boostorg/container/blob/83bb62fed3aca489e447e394f3b23c272712ecb7/include/boost/container/detail/tree.hpp#L137-L138
https://github.com/boostorg/container/blob/83bb62fed3aca489e447e394f3b23c272712ecb7/include/boost/container/list.hpp#L79
https://github.com/boostorg/container/blob/83bb62fed3aca489e447e394f3b23c272712ecb7/include/boost/container/slist.hpp#L84
https://github.com/boostorg/container/blob/83bb62fed3aca489e447e394f3b23c272712ecb7/include/boost/container/stable_vector.hpp#L150-L151
https://github.com/boostorg/container/blob/83bb62fed3aca489e447e394f3b23c272712ecb7/include/boost/container/string.hpp#L176-L177
https://github.com/boostorg/container/blob/92e5ffb151528ad7755b608eee30cb6ce217c603/include/boost/container/detail/copy_move_algo.hpp#L1024-L1025
https://github.com/boostorg/container/blob/92e5ffb151528ad7755b608eee30cb6ce217c603/include/boost/container/detail/copy_move_algo.hpp#L1054-L1055
https://github.com/boostorg/container/blob/059133a3453378147f2bee2d9968544f64213936/include/boost/container/static_vector.hpp#L73

Library
Is of the form

aligned_storage<sizeof(T),
alignof(T)>?

Depends on
default

alignment?
Source

Boost.Coroutine2 YES NO pull_control_block_cc.hpp:33

Boost.Coroutine2 YES NO pull_control_block_cc.hpp:74

Boost.Fiber YES NO shared_state.hpp:160

Boost.Fiber YES NO buffered_channel.hpp:41

Boost.Fiber YES NO buffered_channel.hpp:536

Boost.Fiber YES NO unbuffered_channel.hpp:585

Boost.Flyweight YES NO archive_constructed.hpp:70

Boost.Flyweight NO NO key_value.hpp:157-164

Boost.Foreach NO YES foreach.hpp:611

Boost.Geometry YES NO varray.hpp:165-168

Boost.Geometry YES NO varray.hpp:1052

Boost.Geometry YES NO varray.hpp:1101

Boost.Geometry YES NO varray.hpp:1613-1616

Boost.Geometry YES NO serialization.hpp:50

Boost.Hana NO YES traits.hpp:176

Boost.Hana NO NO traits.hpp:169

Boost.Hof NO YES construct.hpp:106

Boost.Interprocess NO NO offset_ptr.hpp:69-72

Boost.Iostreams YES NO optional.hpp:108

Boost.Lockfree NO NO spsc_queue.hpp:429-431

Boost.Log YES NO thread_id.cpp:131

Boost.Log YES NO threadsafe_queue.hpp:78

Boost.MultiIndex YES NO archive_constructed.hpp:74

Boost.MultiIndex YES NO seq_index_ops.hpp:134-137

Boost.MultiIndex YES NO seq_index_ops.hpp:141-149

Boost.Optional YES NO old_optional_implementation.hpp:87

Boost.Optional YES NO optional.hpp:120

Boost.Parameter NO YES maybe.hpp:37-39

Boost.PolyCollection YES NO value_holder.hpp:61

Boost.Pool YES NO singleton_pool.hpp:196

Boost.Python NO YES referent_storage.hpp:59-61

Boost.Serialization YES NO stack_constructor.hpp:38-41

Boost.Signals2 NO NO auto_buffer.hpp:1061-1063

https://github.com/boostorg/coroutine2/blob/b029799da7662ca9c398efbc6dbcaf3c2b57d118/include/boost/coroutine2/detail/pull_control_block_cc.hpp#L33
https://github.com/boostorg/coroutine2/blob/b029799da7662ca9c398efbc6dbcaf3c2b57d118/include/boost/coroutine2/detail/pull_control_block_cc.hpp#L74
https://github.com/boostorg/fiber/blob/56647d57a95e0005e00c3bcf6b477e560a029159/include/boost/fiber/future/detail/shared_state.hpp#L160
https://github.com/boostorg/fiber/blob/56647d57a95e0005e00c3bcf6b477e560a029159/performance/thread/buffered_channel.hpp#L41
https://github.com/boostorg/fiber/blob/34436549ba6dd5f4a89bc72b7d7cd5f9fedbf857/include/boost/fiber/buffered_channel.hpp#L536
https://github.com/boostorg/fiber/blob/34436549ba6dd5f4a89bc72b7d7cd5f9fedbf857/include/boost/fiber/unbuffered_channel.hpp#L585
https://github.com/boostorg/flyweight/blob/b85af3210760148ce90e2840e49c4d2075226384/include/boost/flyweight/detail/archive_constructed.hpp#L70
https://github.com/boostorg/flyweight/blob/0ce2a430879c95360382d6fce1b24821151dcbe9/include/boost/flyweight/key_value.hpp#L157-L164
https://github.com/boostorg/foreach/blob/a89a392351e5ab71797839392c7874a56ed1681a/include/boost/foreach.hpp#L611
https://github.com/boostorg/geometry/blob/af62c5c18a592fc4c881a59ad1ea24ebf6bcf1ea/include/boost/geometry/index/detail/varray.hpp#L165-L168
https://github.com/boostorg/geometry/blob/af62c5c18a592fc4c881a59ad1ea24ebf6bcf1ea/include/boost/geometry/index/detail/varray.hpp#L1052
https://github.com/boostorg/geometry/blob/af62c5c18a592fc4c881a59ad1ea24ebf6bcf1ea/include/boost/geometry/index/detail/varray.hpp#L1101
https://github.com/boostorg/geometry/blob/af62c5c18a592fc4c881a59ad1ea24ebf6bcf1ea/include/boost/geometry/index/detail/varray.hpp#L1613-L1616
https://github.com/boostorg/geometry/blob/8eee20af4df5fb826c7a4860bebabfee8ac4f588/include/boost/geometry/index/detail/serialization.hpp#L50
https://github.com/boostorg/hana/blob/e53c547207c4364f051d5ca7c244ffa03267af69/include/boost/hana/traits.hpp#L176
https://github.com/boostorg/hana/blob/e53c547207c4364f051d5ca7c244ffa03267af69/include/boost/hana/traits.hpp#L169
https://github.com/boostorg/hof/blob/1bdf4a8aef69981d081660d5fd5226512b7d668e/include/boost/hof/construct.hpp#L106
https://github.com/boostorg/interprocess/blob/14bc86a0c6cecb5d2d30858a8d78f3dab3773d10/include/boost/interprocess/offset_ptr.hpp#L69-L72
https://github.com/boostorg/iostreams/blob/230339539c250fc7df4fa84eec0890450ac49db7/include/boost/iostreams/detail/optional.hpp#L108
https://github.com/boostorg/lockfree/blob/ffd91db4589fda2e5f843d0773dc3325baea88e0/include/boost/lockfree/spsc_queue.hpp#L429-L431
https://github.com/boostorg/log/blob/cf8b4a3238ce27e3abd2fba662c5118de4c6493c/src/thread_id.cpp#L131
https://github.com/boostorg/log/blob/cf8b4a3238ce27e3abd2fba662c5118de4c6493c/include/boost/log/detail/threadsafe_queue.hpp#L78
https://github.com/boostorg/multi_index/blob/7b77621323e1d310102ded97866966baa9cb8554/include/boost/multi_index/detail/archive_constructed.hpp#L74
https://github.com/boostorg/multi_index/blob/7b77621323e1d310102ded97866966baa9cb8554/include/boost/multi_index/detail/seq_index_ops.hpp#L134-L137
https://github.com/boostorg/multi_index/blob/7b77621323e1d310102ded97866966baa9cb8554/include/boost/multi_index/detail/seq_index_ops.hpp#L141-L149
https://github.com/boostorg/optional/blob/0f8e356bca18a23249b9dfcadd0e62928a528626/include/boost/optional/detail/old_optional_implementation.hpp#L87
https://github.com/boostorg/optional/blob/29b2dae63027b22076fef0580bef3603a3c47a2a/include/boost/optional/optional.hpp#L120
https://github.com/boostorg/parameter/blob/80e1289bf0258bb4545d8d87d3fa1dd2c3fd1750/include/boost/parameter/aux_/maybe.hpp#L37-L39
https://github.com/boostorg/poly_collection/blob/fd294c2abf6ac81158ffdf3b2be71dde9eb6b832/include/boost/poly_collection/detail/value_holder.hpp#L61
https://github.com/boostorg/pool/blob/59e0d89127092333d8fa1a2c732c6bfcb4f7fbb7/include/boost/pool/singleton_pool.hpp#L196
https://github.com/boostorg/python/blob/ac62db1cf17c0af44dc2b2117f9ddeee327e5e7c/include/boost/python/detail/referent_storage.hpp#L59-L61
https://github.com/boostorg/serialization/blob/738695b70733f9d592a570fb17a505d6a029b48a/include/boost/serialization/detail/stack_constructor.hpp#L38-L41
https://github.com/boostorg/signals2/blob/37a0007fe1a40e61f7d0a38dbcd016fb59fb1947/include/boost/signals2/detail/auto_buffer.hpp#L1061-L1063

Library
Is of the form

aligned_storage<sizeof(T),
alignof(T)>?

Depends on
default

alignment?
Source

Boost.Spirit YES NO static.hpp:103-104

Boost.Unordered YES NO implementation.hpp:751-752

Boost.Unordered YES NO implementation.hpp:2753-2754

Boost.Utility YES NO value_init.hpp:93

Boost.Variant NO NO variant.hpp:366-369

Abseil YES NO mutex_nonprod.inc:255

Abseil YES NO fixed_array.h:399-400

Abseil YES NO inlined_vector.h:1248-1249

Abseil YES NO inlined_vector.h:1250-1251

Abseil YES NO low_level_alloc.cc:222-223

Abseil YES NO raw_hash_set.h:1156-1157

Abseil YES NO raw_hash_set.h:1626-1627

Abseil YES NO raw_hash_set.h:542-543

Abseil NO NO symbolize_win32.inc:54-55

[4] std::aligned_storage on CppReference.com

[5] StackOverflow comment by user743382

[6] StackOverflow post by Andrew Tomazos

[7] StackOverflow post by nwp

[8] StackOverflow comment by Andrew

[9] "More C++ Idioms/Nifty Counter" on WikiBooks.org

[10] "Pimpl idiom without dynamic memory allocation" blog post

[11] "À propos de l'alignement en mémoire" blog post

[12] "Strange behavior of std::aligned_storage" blog post

[13] WTF::NeverDestroyed on opensource.apple.com

[14] "Multiple Producer Single Consumer Lockless Q" on haskell.org

https://github.com/boostorg/spirit/blob/b4c5ef702bf6c28e964a84c9e9abe1a6549bce69/include/boost/spirit/home/classic/core/non_terminal/impl/static.hpp#L103-L104
https://github.com/boostorg/unordered/blob/f3649e4ae0a86794efc6b0eabbc4f68071eb5c27/include/boost/unordered/detail/implementation.hpp#L751-L752
https://github.com/boostorg/unordered/blob/f3649e4ae0a86794efc6b0eabbc4f68071eb5c27/include/boost/unordered/detail/implementation.hpp#L2753-L2754
https://github.com/boostorg/utility/blob/d4170ccdb54e94a76c7a8f62b86ba8a7675bb629/include/boost/utility/value_init.hpp#L93
https://github.com/boostorg/variant/blob/500778bd7b786be24166036821e0f9a46bc939b0/include/boost/variant/variant.hpp#L366-L369
https://github.com/abseil/abseil-cpp/blob/389ec3f906f018661a5308458d623d01f96d7b23/absl/synchronization/internal/mutex_nonprod.inc#L255
https://github.com/abseil/abseil-cpp/blob/a4c3ffff11eec0ee45742f915c255e9f870b7e0f/absl/container/fixed_array.h#L399-L400
https://github.com/abseil/abseil-cpp/blob/66f9becbb98ecc083f4db349b4b1e0ca9de93b15/absl/container/inlined_vector.h#L1248-L1249
https://github.com/abseil/abseil-cpp/blob/66f9becbb98ecc083f4db349b4b1e0ca9de93b15/absl/container/inlined_vector.h#L1250-L1251
https://github.com/abseil/abseil-cpp/blob/3088e76c597e068479e82508b1770a7ad0c806b6/absl/base/internal/low_level_alloc.cc#L222-L223
https://github.com/abseil/abseil-cpp/blob/018b4db1d73ec8238e6dc4b17fd9e1fd7468d0ed/absl/container/internal/raw_hash_set.h#L1156-L1157
https://github.com/abseil/abseil-cpp/blob/018b4db1d73ec8238e6dc4b17fd9e1fd7468d0ed/absl/container/internal/raw_hash_set.h#L1626-L1627
https://github.com/abseil/abseil-cpp/blob/018b4db1d73ec8238e6dc4b17fd9e1fd7468d0ed/absl/container/internal/raw_hash_set.h#L542-L543
https://github.com/abseil/abseil-cpp/blob/87a4c07856e7dc69958019d47b2f02ae47746ec0/absl/debugging/symbolize_win32.inc#L54-L55
https://en.cppreference.com/w/cpp/types/aligned_storage
https://stackoverflow.com/a/50272019
https://stackoverflow.com/q/28187732
https://stackoverflow.com/q/37244574
https://stackoverflow.com/a/39296185
https://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Nifty_Counter
https://www.codesynthesis.com/~boris/blog/2010/07/20/pimpl-idiom-without-dynamic-allocation/
https://h-deb.clg.qc.ca/Sujets/Developpement/Alignement.html
https://www.codesd.com/item/strange-behavior-of-std-aligned-storage.html
https://opensource.apple.com/source/WTF/WTF-7601.7.1/wtf/NeverDestroyed.h.auto.html
https://hackage.haskell.org/package/direct-rocksdb-0.0.1/src/rocksdb-5.8/util/mpsc.h

