
Not All Agents Have TLS
This paper: P1367R1.

Author: ogiroux@nvidia.com

Date: 16/06/2019.

The reality of thread_local is more complex than the Standard's terminology can
be used to explain. This paper proposes to make the current state-of-the-art more
comprehensible.

Revision history
R1: This version. Makes more clear what is proposed to be documented.

R0: First version. Already included some feedback from the reflector.

Introduction

About the word "thread"...

There are two concepts that we call a "thread":

1. One of a concrete kind of execution agent underneath thread and main.
2. The closure over all evaluations sequenced after a specific evaluation.

Today, the Standard continues to conflate these two concepts in many places,
despite the wording improvements we made around execution agents. That
conflation appears harmless in the Standard today, because the execution agents
which the Standard itself has to account for are those created for thread and main
only. Unfortunately, that makes it impossible to model real implementations' non-
thread, non-main execution agents using the Standard's terminology without
getting confused - including many which are tempting to use underneath parallel
algorithm.

Step 0: a thread is a thread.

mailto:ogiroux@nvidia.com

Before I propose any deeper changes, we need to agree (at least temporarily while
you read this) to address this conflation:

1. The word thread (in prose font) and the identifier thread (in code font) should
be clarified to mean the same intuitive thing: a concrete execution agent with
all of the capabilities of an OS thread.

2. The extant term thread of execution can then be clarified to refer to the
evaluations performed by an execution agent, that are sequenced after the
initial one.

Current state-of-the-art

The Standard requires that thread_local objects be instantiated for every thread.
Because of the conflation discussed above, it's unclear which of the two concepts is
truly meant here. This said, implementations all take it to mean the same thing: it's
threads, not threads of execution.

The problem with this (universal) interpretation is that no one actually provides a
definition for what thread_local means in executions agents besides threads. The
Standard neither provides this meaning, nor does it provide the words needed to
provide this meaning. Let's address that.

Proposed direction: 5 steps to better clarity.

Step 1: thread_local relates to threads of execution, some of them.

Let's first consider that thread_local and TLS are also di!erent concepts. The
former qualifies an object instance declaration, to tie an instance of this type to a
"thread", which we could de-conflate to either be a thread or a thread of control. The
latter is a storage mechanism that threads tend to provide, is understood to be
useful to be implement thread_local, and is clearly a source of inspiration for
thread_local.

The assumption that thread_local is automatically related to threads causes these
problems:

1. Names are introduced in C++ for all threads of execution, even those not on
thread or main.

2. Accesses to thread_local objects have undocumented behavior, except on
thread or main.

3. We have proposals to duplicate this pattern: add X_local for each execution
agent type X.

My suggestion is to turn this assumption around: thread_local is about threads of
control, but accesses to thread_local objects have undefined behavior if conditions
on the execution agent are not met. There are only two settings here, not a plethora
of options: either thread_local has the one meaning the Standard gives it now, or
it has undefined behavior (or IFNDR, possibly).

While we're on this topic, I also suggest that we interpret the std::this_thread
namespace to refer to the thread of execution. We may want to add functions to
query execution agent properties in this namespace, which may be implemented
with TLS (true) or underlying execution agent features under implementation
control. For users of threads, nothing changes; for users of non-thread execution
agents, now they get documented behavior.

Step 2: threads shall support thread_local.

Before we consider execution agents that do not support thread_local, and what
that may mean, it's clear that threads must support thread_local. That this be
unconditionally true is required for compatibility with C++11, we cannot revisit this.

Implementations are allowed to o!er "threads" that are not equivalent to ISO C++
threads with di!erent TLS semantics than thread_local, but these "threads"
cannot be spelled thread or main. The only exception to this is for Freestanding
implementation, see below.

Step 3: main has implementation-defined TLS.

There are only two valid cases:

If thread is supported, then main has thread_local all the same.
Else, thread_local objects may be simple global variables. This only applies
to Freestanding implementations that choose not to support thread.

Step 4: when execution agents do not support thread_local.

thread_local int x = 0;

int main(int,char*[]) {
 x = 1; // OK, may be a static on Freestanding
 std::thread t([](){ // OK on Hosted, impl-def on Freestanding
 x = 2; // OK, must be supported on std::thread
 }).join();
 return 0;
}

Executors should (are encouraged to) create execution agents that support
thread_local, the same as thread and main. Executors that do not, however, must
indicate what they support to the user through queryable properties on the
executor's interface and/or the this_thread namespace (if we extend it to do so).
Note that execution agents created for parallel algorithms with standard policies
may have implementation-defined support, as if the implementation used an
executor to do so (as they are wont to do).

For example:

If thread_local is not supported on an execution agent, then uses of such objects
on that execution agent are either undefined or ill-formed, no diagnostic required.

Step 5: attributes may be used for selective support.

Execution agents that report support for thread_local shall allow access to all
instances of thread_local objects in the program. Those which do not are not
expected to support any such instances.

What of execution agents that could o!er selective support? These would report no
support in the Standard sense, but may be documented by the implementation to
have some kind of support.

To clarify this support, implementations with execution agents "XYZ" that have
implementation-defined support should:

1. O!er a custom queryable property, e.g. has_xyz_locals().
2. Use a custom attribute on thread_local declarations, e.g. [[xyz_local]]

thread_local to introduce a thread_local object in this implementation-

namespace std {
 namespace this_thread {
 static constexpr bool has_locals(); // example extension
 }
}

thread_local int x = 0;

void foo() {
 if(std::this_thread::has_locals())
 x = 1; // OK
 else
 x = 2; // Oops
}

specific local storage.

Note that attributes may always be ingored and, in fact should be ignored in other
contexts. Hence, continuing with our example:

1. The set of every object declared with thread_local regardless of attributes,
is available for thread, main and execution agents where
std::this_thread::has_locals() is true.

2. The subset of those objects declared with [[xyz_local]] thread_local, is
available for execution agents where std::this_thread::has_locals() is
false, but has_xyz_locals() is true.

This allow implementations to introduce specialized execution agents with
selective TLS, in a portable way. That is, the semantics of a program that uses the
attribute remains clear / well-defined on other implementations with other
execution agents, especially those based on threads.

In closing
In the real world, not all execution agents have TLS, but the Standard leaves us
without words to describe them. If we increase the separation between the concepts
of threads and threads of execution, we can begin to define what thread_local
means on di!erent kinds of execution agents. We can then o!er minor extensions
that make it possible to write portable programs even when they make use of
specialized execution agents.

See also
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3487.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3556.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4439.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0097r0.html

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0108r1.html

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0772r1.pdf

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3487.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3556.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4439.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0097r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0108r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0772r1.pdf

	Not All Agents Have TLS
	Revision history
	Introduction
	About the word "thread"...
	Step 0: a thread is a thread.
	Current state-of-the-art

	Proposed direction: 5 steps to better clarity.
	Step 1: thread_local relates to threads of execution, some of them.
	Step 2: threads shall support thread_local.
	Step 3: main has implementation-defined TLS.
	Step 4: when execution agents do not support thread_local.
	Step 5: attributes may be used for selective support.

	In closing
	See also

