
Document P1331R1

Date 2019‑06‑09

Author CJ Johnson <johnsoncj@google.com>

Audience Core Working Group (CWG), previously Evolution Working Group (EWG)

Permitting trivial default initialization in constexpr contexts

Updates over Revision 0

Revision 0 passed the Evolution Working Group straw poll and was forwarded to Core Working Group for inclusion in C++2a

SF F N A SA

6 13 5 2 0

Merged content from "Open questions" section into "Avoiding undefined behavior" section and removed the "Open questions"

section as there are no more open questions

Added wording

Minor edits

Introduction

This paper proposes permitting default initialization for trivially default constructible types in constexpr contexts while continuing

to disallow the invocation of undefined behavior. In short, so long as uninitialized values are not read from, such states should be

permitted in constexpr in both heap and stack allocated scenarios.

Prerequisite

Let the below NontrivialType and TrivialType type definitions be imported and visible for all following example code snippets.

struct NontrivialType {
 bool val = false;
};

struct TrivialType {
 bool val;
};

Justification as of C++17

For types with nontrivial default constructors, default initialization is defined as calling the default constructor. This behavior is

consistent across runtime and constexpr contexts (assuming the default constructor is marked as or defaulted as constexpr).

Unfortunately, this guarantee does not generically apply across the language. For types with trivial default constructors, default

initialization does not compile in constexpr. This becomes a pain point when writing generic code. Some constexpr function

templates that are well defined for types with user‑defined constexpr default constructors will fail to compile when instantiated

with, for example, any of the fundamental integer types provided by the language.

The below code example, Example1 , shows how this inconsistency can negatively affect code that one would expect to be

consistent across template instantiations. If this proposal is adopted, all four below callsites, instead of just the first three, would be

valid and compile covering the full matrix of runtime/constexpr by trivially/nontrivially default constructible.

namespace Example1 {

template <typename T>
constexpr T f(const T& other) {
 T t; // default initialization
 t = other;

mailto:johnsoncj@google.com

 return t;
}

// These three successfully compile
auto nontrivial_rt = f(NontrivialType{});
auto trivial_rt = f(TrivialType{});
constexpr auto nontrivial_ct = f(NontrivialType{});

// As of C++17, this fails to compile meaning `Example1::f(const T&)` is not
// generic
constexpr auto trivial_ct = f(TrivialType{});

} // namespace Example1

Note: nontrivial_rt is constant initialized since Example1::f(const NontrivialType&) is valid in constexpr. As a bonus, by

making Example1::f(const TrivialType&) valid in constexpr, trivial_rt will also be given constant initialization.

Justification for C++2a

In addition to the unexpectedly inconsistent behavior demonstrated above, the presence of P0784 [1] in C++2a strengthens the

need for this proposed change. Trivial default initialization is allowed, but only for heap allocated objects. This proposal would

simply fix the "bug" disallowing that same behavior for stack allocated objects.

The below examples, Example2 and Example3 , show side‑by‑side what should be semantically equivalent functions. The current

C++2a draft standard, with the adoption of P0784, would permit, in constexpr, the function definitions that use heap allocation but

not the function definitions that use stack allocation. This proposal, if adopted with P0784, would result in all four below callsites

being valid.

namespace Example2 {

template <typename T>
constexpr T f1(const T& other) {
 auto* t = new T; // default initialization
 *t = other;
 T out = *t;
 delete t;
 return out;
}

template <typename T>
constexpr T f2(const T& other) {
 T t; // default initialization
 t = other;
 T out = t;
 return out;
}

// Successfully compiles
constexpr auto trivial_ct_h = f1(TrivialType{});

// Fails to compile meaning `Example2::f1(const T&)` and
// `Example2::f2(const T&)` are observably different
constexpr auto trivial_ct_s = f2(TrivialType{});

} // namespace Example2

namespace Example3 {

template <typename T>
constexpr T f1(const T& other) {
 auto* t = new T[1]; // default initialization
 t[0] = other;
 T out = t[0];
 delete[] t;
 return out;
}

template <typename T>
constexpr T f2(const T& other) {
 T t[1]; // default initialization
 t[0] = other;
 T out = t[0];

 return out;
}

// Successfully compiles
constexpr auto trivial_ct_h = f1(TrivialType{});

// Fails to compile meaning `Example3::f1(const T&)` and
// `Example3::f2(const T&)` are observably different
constexpr auto trivial_ct_s = f2(TrivialType{});

} // namespace Example3

Avoiding undefined behavior

As always, undefined behavior cannot be invoked in constexpr. In order to allow trivial default initialization, some mechanism must

be in place that prevents reading uninitialized values. That mechanism should continue to be compilation failure; however, instead

of the overly restrictive current behavior (failing to compile at the point of initialization), compilation should only fail at the point in

code where the uninitialized read takes place.

This should not be difficult for compiler developers to implement nor should it cause much if any compile time overhead. The steps

required are similar to detecting reads of out‑of‑lifetime variables, something that current compilers already implement for

constant evaluation. [2]

That said, reading uninitialized instances of unsigned char at runtime is not undefined. For now, such behavior shall remain non‑

constant. From Richard Smith:

The most reasonable thing would be to say that (in the short term at least), reading the value of an uninitialized object is non‑

constant regardless of its type. We can revisit that decision if we find a use case, but going in the other direction would be

more problematic due to being a potentially breaking change. [3]

Further justification: On "Constexpr all the things!"

absl::InlinedVector<T, N, A> is a std::vector<T, A> ‑like type that takes advantage of the Small Size Optimization (SSO).

SSO is implemented by including a buffer inside the type to avoid allocation for small instances. As an optimization, unused bytes

in the inlined buffer are left uninitialized. "Don't pay for what you don't use," as they say.

In the spirit of P0784 [1], if InlinedVector were to be made available in constexpr, the behavior should be consistent with the

behavior of runtime instances. The unused inlined bytes should be able to be left uninitialized so that implementers may be able to

expose accidental uninitialized reads through constexpr evaluation and UBSan.

Additionally, from a maintence perspective, not having to fork the implementation to handle constexpr is much appreciated.

Wording

Under 10.1.5 [dcl.constexpr], remove the last condition from (3.4.4) and update the corresponding example:

 [...]

 (3.4.4) - a definition of a variable of non-literal type or of static or thread storage duration
- or for which no initialization is performed
 .

 [...]

 [...]

 constexpr int uninit() {
- int a; // error: variable is uninitialized
+ int a;
- return a;
+ return a; // error: uninitialized read
 }

 [...]

To ensure reading uninitialized unsigned char instances remains non‑constant, under 7.7 [expr.const], add a new bullet to p4:

 [...]

+ * (4.24) - an expression whose result is an indeterminate value ([basic.indet])

References

[1] P0784: More constexpr containers

[2] Personal correspondence with Richard Smith about this proposal

[3] Comment by Richard Smith in [RFC] P1331: Permitting trivial default initialization in constexpr contexts

https://wg21.link/p0784
https://groups.google.com/a/isocpp.org/d/msg/std-proposals/ldywJibWCBw/hGiOS8cRAgAJ

