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Abstract

The current wording for contracts opens some opportunities for undefined behavior.
Those opportunities derive from the freedom for assuming a contract even when the
program is built in a mode where the contract has not been checked. This paper proposes
a minimal set of changes to solve the issue by requiring that only contracts that have been
checked can be assumed.

1 Summary

This paper proposes the following changes to the current wording for contracts:

• Clarifies assumption of default and audit contracts by ensuring that a contract that is
not evaluated cannot be used for any kind of assumption. Morever if such contract has
been evaluated it can be assumed only when the continuation mode has been disabled.

2 Changes from previous version

2.1 Changes in R3

The following major changes are made with respect to P1290R2 [1].

• Removed section on continuation mode.

• Simplified text in the proposed solutions section (Section 6).

• Removed the comparison with other proposals.

• Removed frequent questions are they were related to removed sections.

• Simplified text in the wording section (Section 7).
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2.2 Changes in R2

The following major changes are made with respect to P1290R1 [2].

• Added a new section on continuation after contract violation.

• Revised text in proposed solutions section (Section 6) with new simplifications on seman-
tics.

• Added a new section comparing with other related proposals.

• Revised answers to some question.

• Revised proposed wording (Section 7).

2.3 Changes in R1

The following major changes are made with respect to P1290R0 [3].

• Removed references in axioms to assumption barriers.

• Revised text in proposed solutions section (Section 6) including the summary of semantics.

3 Introduction

Consider the following code:

int f(int x)
[[ expects: x>0]]

{
return 1/x;
}

int g(int x)
[[ expects audit: x==2 || x==3]]

{
return f(x);
}

Under the current wording [4], contracts that are not checked can be assumed to be true.
Consequently, we might have the following behaviors:

• When build mode is audit, both checks are intended to be evaluated and consequently
assumed. As a consequence f()’s precondition can be elided even its checking is on as it
can be assumed to always be satisfied.

• When build mode is default, only the check in f() is intended to be evaluated. However,
assuming the precondition in g() implies that the precondition inf f() is always satisfied
and so the check can be elided even though it is on. Consequently, invoking g() with a
value of 0 would lead to undefined behavior.

• When build mode is off , no check evaluated. However, they are both assumed leading
again to undefined behavior.
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Additionally, when the continuation mode is on (continue after violation) the assumption
brings in additional undefined behavior as now we are assuming conditions that might be false
(because the failed and we returned after running the violation handler).

This original intent of allowing assumptions was to provide an ample margin for optimiza-
tion. However, the above example is an illustration on how assumptions may lead to undefined
behavior.

The interactions of contracts and undefined behavior have been explained in detail in [5].
However, it should be noted that the main goal of contracts is allowing to write more correct
software by helping to detect more programming errors. Introducing new undefined behavior
was an unintentional effect that needs to be avoided.

Of course, a secondary effect of contracts is giving compilers leeway to perform optimiza-
tions. The aim is to satisfy this goal only in the cases that the first goal is not sacrificed.

4 Potential for undefined behavior

In this section we analyze some examples of possible undefined behavior.

4.1 Example 1

In [5] an example provided by Herb Sutter and prototyped by Peter Dimov (see at https:

//godbolt.org/g/7TP7Mt) with simulated contracts is presented.
Essentially this example translated into contracts syntax would be:

void f(int x) [[ expects audit: x==2]]
{

printf (”%d\n”, x);
}

void g(int x) [[ expects: x>=0 && x<3]]
{

extern int a[3];
a[x] = 42;
}

void foo();
void bar();
void baz();

void h(int x) [[ expects: x>=1 && x<=3]]
{

switch(x) {
case 1: foo (); break;
case 2: bar(); break;
case 3: baz(); break;
}
}

void test()
{

int val = std::rand();
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try { f(val ); /∗ ... ∗/ } catch (...) { /∗ ... ∗/ }
try { g(val ); /∗ ... ∗/ } catch (...) { /∗ ... ∗/ }
try { h(val ); /∗ ... ∗/ } catch (...) { /∗ ... ∗/ }
}

4.1.1 Current status

With the current definition of contracts, compiling the code with the build mode set to audit
is not problematic. The precondition at f() is checked and it can be assumed to be true in
next calls. Then, calls to g() and h() can optimize out the contracts under the assumption
that x is 2.

However, if the build mode is set to default, the precondition at f() would not be checked,
but still assumed. Consequently, after the call to f(val) the compiler would be allowed to
assume that val is 2 and the preconditions of g() and h() would be assumed to be correct
and optimized out. This would lead to undefined behavior. For calls to h() it might be the
case that we got the surprising effect that no function is called. But even worse, if the switch
is implemented as a jump table and the compiler assumes the contract and elides the jump
table bounds check, then a wild branch would arise. The generated code would attempt to
read out-of-bounds at jmptbl[val], reinterpret whatever bytes it finds there as an address
of executable code, and jump there to continue execution. This would result in random code
execution and a very serious security issue.

4.1.2 Avoiding unchecked assumptions with disabled continuation

If we change the situation to require that no assumption of unchecked contract can be made
when the continuation is disabled, the outcome is quite different.

Compiling the code with the build mode set to audit would not be problematic and would
lead to the same outcome than with the current wording.

When the build mode is set to default, the precondition at f() would not be checked and
would not be assumed. Consequently, after the call to f(val) no assumption can be made on
the value of val. The preconditions of g() and h() would not be optimized out and the checks
would be performed. No undefined behavior happens.

4.1.3 Avoiding all assumptions with enabled continuation

If we avoid all assumptions when continuation is enabled, we also avoid the possible undefined
behavior derived from assuming a failed contract.

4.2 Example 2

This example is a variation of previous example, which is also discussed in [5]. In this variation
the precondition at function f() is now moved the be an axiom.

void f(int x) [[ expects axiom: x==2]]
{

printf (”%d\n”, x);
}

With the current definition of contracts, axioms are always assumed.
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When the build mode is set to default, the precondition at f() would not be checked (as
it is an axiom), but still assumed. In this case, the contract elimination is considered to be
intentional as an axiom is considered to be always true.

When the build mode is set to off , no precondition is checked, but val==2 is still assumed.
However, in some cases it might be interesting to be able to remove assumptions introduced

by axioms. That would be the case, in a debug version where the developer wants to remove
all possible assumptions. On the other hand, there are cases where axioms are desired to be
used as assumptions. We consider this aspect orthogonal to the checking level induced by the
build mode.

4.3 Example 3

Consider now this simple example:

void f(int ∗ p) [[ expects axiom: p!=nullptr]]
{

if (p) g();
else h();
}

When axioms are assumed f() would be optimized to always call g(). That is not always
desirable. Again the ability to control independently whether axioms are assumed or not gives
us what we need.

5 Assumptions and continuation mode

5.1 Basic example

Consider now the following code

void f(int ∗ p) [[ expects: p!= nullptr]]
{

if (p) g();
}

5.1.1 Disabled continuation and check default contracts

If we compile with continuation mode set to off (the handler never returns) and the checking
level is set to default, the compiler can use the information from the precondition. The
generated code would be essentially the following:

void f(int ∗ p) {
if (p==nullptr) {

invoke handler (); // Never return
}
else {

g();
}
}

The assumption that p is not nullptr is derived from the structure of the generated code
and no special provision is needed to state that the contract is assumed.
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5.1.2 Enabled continuation mode and check default contracts

If we compile with continuation mode set to on (the handler might return) and checking level
set to default, the compiler would generate a different code structure that would be essentially:

void f(int ∗ p) {
if (p==nullptr) {

invoke handler (); // May return
}
g();
}

In this case, the contract (p!=nullptr)) is checked, but if it fails is not assumed. Again,
no special provisions are needed, the behavior is the consequence of the structure of generated
code.

5.2 Another example

Let’s try another example:

void f(int i ) {
[[ assert: i==0]]
[[ assert: i>=0]]
g();
}

5.2.1 Disabled continuation and check default contracts

In this case, the generated code would be equivalent to:

void f(int i ) {
if ( i!=0) invoke handler (); // does not return
else {

if ( i<0) { // Always false as i==0 is always true
invoke handler (); // does not return

}
g();
}
}

The second check can only be called if the first one was successful. But if the first was
successful i must be 0 and the second one will be optimized out. Note, that again this is a
consequence of the generated code structure, and the resulting code would be similar to:

void f(int i ) {
if ( i!=0) invoke handler (); // does not return
else {

g();
}
}

5.2.2 Enabled continuation and check default contracts

In this case, the generated code would be equivalent to:
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void f(int i ) {
if ( i!=0) invoke handler (); // may return
if ( i<0) invoke handler(); // may return. Never optimized out
g();
}

Now, both checks are independent and no one can be elided.

5.3 Consequences

As it has been shown through examples, no special provision in the standard is needed to state
our goal. Under disabled continuation mode a contract check implies its assumption. Under
enabled continuation mode a contract check does not imply any assumption at all.

6 Proposed solutions

6.1 Avoiding the undefined behavior

This paper proposes to avoid the undefined behavior by clarifying the semantics of every build
mode in regards of both evaluation of conditions and assumption of those conditions. For as-
sumption of conditions the clarification needs to address the case where continuation is disabled
and when the continuation is enabled.

To define such semantics, the following simple principles are proposed to be followed:

• A contract that, in a given build mode, is not evaluated cannot be used for any kind of
assumption. This leads to modes where only contracts that have been checked are used
for assumptions and avoiding in this way the identified paths towards undefined behavior.

• Moreover, contracts that have been checked can only be assumed if the continuation mode
has been disabled. Otherwise, such assumptions cannot be made. Note, that no special
provision is needed as the application of general rules of conditional statements would
derive this behavior as illustrated in previous sections.

• Axiom contract are considered as if they had been evaluated when they are enabled.
Otherwise, they are ignored. Note that in any case, they need to have a valid syntax,
although expressions in an axiom are allowed to contain invocations to declared but not
defined functions. If an axiom contains any invocation that is declared but not defined
the axiom is ignored.

7 Proposed wording

In this section a (probably incomplete) wording is presented. This will be refined before the
Kona meeting.

7.1 Part I: Avoiding undefined behavior

In section [dcl.attr.contract.check]/4, edit as follows:
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4. During constant expression evaluation (7.7), only predicates of checked con-
tracts are evaluated. In other contexts, it is unspecified whether the predicate for a
contract that is not checked under the current build level is evaluated; if the predicate
of such a contract would evaluate to false, the behavior is undefined. Only predi-
cates of default and audit contracts that are checked under the current build level are
evaluated.
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