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P1202R1: Asymmetric Fences 

Overview 
Some types of concurrent algorithms can be split into a common path and an uncommon path, 
both of which require fences (or other operations with non-relaxed memory orders) for 
correctness. On many platforms, it’s possible to speed up the common path by adding an even 
stronger fence type (stronger than memory_order_seq_cst) down the uncommon path. These 
facilities are being used in an increasing number of concurrency libraries. We propose 
standardizing these asymmetric fences, and incorporating them into the memory model. 

History 
In San Diego, SG1 took the following poll, in the discussion of the R0 version of this paper: 
We are interested in this direction for a TS; we want to do further wording review 
SF F N A SA 
7 3 3 0 0 
This iteration is thematically similar, but emphasizes the wording-relevant portions more heavily. 
 
One of the questions from the discussion was (quoting from the minutes): “In what sense are 
the not sequentially consistent fences sequentially consistent?”; the only real answer was that 
you use them in the places you would otherwise use memory_order_seq_cst fences (e.g. to 
order stores with subsequent loads). The semantics here are strengthened slightly relative to 
R0, to give a more satisfying answer; sequentially consistent asymmetric fences are first-class 
citizens of the SC ordering. However, no consequences can be derived from a light asymmetric 
fence’s inclusion in the ordering, except when viewed relative to a heavy fence. The implications 
(i.e. restrictions imposed on coherence ordering) of the light fence with respect to the heavy 
fence is then the same as if all the fences in questions were 
atomic_thread_fence(memory_order_seq_cst). (There are still no extra inferences one can draw 
between two light fences, even if they’re sandwiched between different pairs of heavy fences). 
 
This wasn’t polled explicitly, but SG1 seemed of the opinion that the asymmetric fence functions 
should be noexcept (on the basis that failures would be unrecoverable). The suggested wording 
has been updated accordingly. 
 



A useful development between R0 and R1 is a discussion spread across the glibc and Linux 
mailing lists, on the formal semantics of sys_membarrier (Google “[PATCH] Linux: Implement 
membarrier function”). Several Linux folks seemed to settle on some RCU-inspired ordering 
guarantees for membarrier(), including patches to the herd formalization of the Linux kernel 
memory model implementing them. They aren’t official, and I don’t have any theorem-prover 
verified equivalences, but the fact that the semantics there are at least as strong as the 
semantics proposed here on a variety of litmus tests increases my confidence in these. 

Recap of Argument for Inclusion in a TS 
Some OSs provide a system call (or some other abstraction that can use system-specific 
features to break past the ordinary limitations of shared memory) that has the effect of ensuring 
that a memory barrier gets inserted asynchronously into the instruction stream of other threads. 
In situations that synchronize between two paths, one very common and one very uncommon, 
the high cost of the OS abstraction on the uncommon path is paid for by the benefits incurred on 
the common one (which can avoid the barrier entirely; it will get inserted if necessary, after a 
request from the uncommon path). These techniques are increasingly common, used in 
language runtimes (e.g. Hotspot), concurrency libraries (e.g. liburcu), and general purpose 
abstractions (e.g. several in folly). When those OS calls aren’t available, programmers 
sometimes work around their absence, with techniques ranging from the ugly (signals, explicit 
quiescence periods) to the profane (mprotect-triggered TLB shootdowns, misaligned atomic 
RMWs). Judicious use of the OS primitives can result in 10x speedups (or more) down fast 
paths. 
 
We propose exposing these OS primitives, through an 
asymmetric_thread_fence_[light|heavy]() API that remains implementable via fallback to 
plain fences, for portability. Since some architectures have costless acquire and release fences 
while others do not, it’s hard for users to express “insert a plain fence, but only if it’s free; 
otherwise use a asymmetric fence” (this comes up, for example, in implementing biased locking 
portably and efficiently across x86 and Power). To make this easy to get “right” portably, we give 
the asymmetric fences a memory order parameter. Acquire and release asymmetric fences can 
cheaply devolve to the non-asymmetric equivalent on TSO architectures, while using truly 
asymmetric functionality on weaker ones. Because some implementations target platforms that 
don’t have underlying OS support (or indeed, even an underlying OS), we’ll need to be careful 
to make sure that the semantics we pick remain correct if every light and heavy fence is 
replaced by its non-asymmetric counterpart. 
 
This summary omits many details; the R0 version has more in-depth arguments for the overall 
shape of the design. 



Some synchronization properties of asymmetric 
techniques 

Relationship between light and heavy fences 
Here, I’ll argue (informally) that all reasonable asymmetric techniques satisfy the following 
property: 
 
For every light fence L and heavy fence H, one of the following holds: 

- Everything sequenced before L strongly happens before everything sequenced after H 
- Everything sequenced before H strongly happens before everything sequenced after L 

 
Implementations boil down to a heavy fence having a synchronization point with some particular 
thread: the point in the target thread’s instruction stream at which the polling or interruption 
occurs. 

Correctness for polling-based techniques 
Here, the compiler inserts explicit periodic checks to see if other threads have a pending 
unacknowledged heavy fence. (These checks need to be periodic rather than only occurring at 
light fences in order to ensure progress for heavy-fencing threads even if other threads never 
perform light fences). In such cases, the polling strategy can check to see if there is a pending 
request, fence if so, and send a response. For these cases, the result is trivial; there is 
release-acquire synchronization between the heavy fence request and the target thread’s 
receipt of it, and release-acquire synchronization between the target thread’s response and the 
heavy-fencing thread’s receipt of the response. 

Correctness for interrupt-based techniques 
Here, the heavy-fencing thread sends some sort of signal (or inter-processor interrupt, etc.) to 
the other threads; a fence is inserted at some point in their (possibly compiler-reordered) 
instruction stream. A light fence is just a compiler barrier. 
 
The interrupt occurs at some point in the target thread’s instruction stream; it is either before the 
compiler barrier, at the point of the compiler barrier, or after the compiler barrier. The first bullet 
point holds in the first two cases (assuming a sufficiently synchronizing interrupt handler), and 
the second bullet point holds in the second two cases. 
 
The interrupt might be received in the middle of an atomic operation (since even loads and 
stores may be implemented as “load; fence” or “store; fence”, or might be a RMW implemented 



using an LL/SC primitive). In practice, the interrupt receipt pathways include equivalent fences 
anyways, and implementations need to be resilient to spurious LL/SC failures for unrelated 
reasons. The existing memory model also breaks if signal handlers are allowed to execute 
without a degree of implied fencing (see the reflector thread “MM implementability in the 
presence of signals”). We don’t need to reason about interrupt receipt within non-atomic 
operations, since a program that can tell the difference is racy to begin with. 

A motivating Litmus test 
To see why we picked the above criterion, rather than the similar but simpler “either H 
synchronizes with L or L synchronizes with H”, consider the following litmus test (which will 
show that the simpler version is not correct). 
Consider the following program: 
 

// T0 

X = 1 
light_fence() 

R0 = Y 

// T1 

Y = 1 
heavy_fence() 

R1 = Z 

// T2 

Z = 1 
light_fence() 

R2 = X 

 
After these have executed, can we have R0 == 0, R1 == 0, R2 == 0? Yes; with the following 
sequence of events (in order of physical time, assuming the presence of store-buffers, and a 
heavy_fence() implementation that sends a signal to every thread in the process). 
 

1. T0: X = 1 executes, and the store enters T0’s store buffer 
2. T0: R0 = Y executes, and sets R0 to 0. 
3. T1: Y = 1 executes. It doesn’t matter if the store leaves T1’s store buffer, since the only 

read of Y has completed. 
4. T1: heavy_fence() sends a signal to T2, and the signal handler completes. 
5. T2: Z = 1 executes, and the store to Z enter’s T2’s store buffer. 
6. T2: R2 = X executes, and sets R2 to 0 (the store to X has not yet left T0’s store buffer). 
7. T1: heavy_fence() sends a signal to T0, and the signal handler completes (flushing T0’s 

store buffer, but too late for it to affect T2). The heavy fence is now done. 
8. T1: R1 = Z executes, and sets R1 to 0 (T2’s store to Z has not yet left its store buffer). 

 
In a polling implementation, the result seems more obvious; the heavy fence can have its 
requests acknowledged before the first instruction of T2, and after the last instruction of T0. 

Strengthening the guarantees 
In implementing the library, we can add a plain sequentially consistent fence before we begin 
invoking the underlying heavy fence implementation. This has two consequences, one obvious 
and one non-obvious: 



- We can use the sequentially consistent fence as the whole heavy fence’s position in the 
SC ordering, and satisfy all the guarantees required with respect to other (non-light) SC 
operations. 

- For the purposes of constraining the values that can be obtained for loads of atomic 
variables, we can assume that the synchronization points of two heavy fences with 
respect to any given target thread occur in the same order as that of their leading fences 
in the SC order; if H1’s initial SC fence precedes H2’s initial SC fence, then for each 
thread T we can pretend that H1’s interruption or poll receipt occurred before H2’s in T’s 
execution, even though they could have occurred out of order in reality. 

 
The justification for the second bullet point is that, in moving the later synchronization point 
earlier in T’s execution, the only thing we’re doing is adding constraints on the values that could 
be obtained by loads between the old and new positions. But those values are already 
constrained by the SC ordering; H1’s SC fence precedes H2’s SC fence, which strongly 
happens before everything after the synchronization point’s fence in the ordering (from the 
synchronization property above). H1’s thread has not read any new (user-visible) values in 
between its fence and its synchronization point with T, so the constraints the movement would 
add were already required to begin with. 
 
This argument is what justifies this paper’s strengthening relative to R0’s. 

Wording 
Light fences don’t establish ordering constraints with non-asymmetric fences. The existing 
wording just refers to “fences”; we need to decide if an “asymmetric fence” is a type of “fence”. 
There are several options: 

- Decide that an asymmetric fence is not a type of fence. In this case, leaving the name 
“fence” in them is a little confusing; we could rename them to “heavy afence” and “light 
afence”, or “hfence” and “lfence”, or something similar. 

- Decide that heavy asymmetric fences *are* plain fences, but that light ones are not. This 
introduces a bit of an ugly asymmetry (and we have the same naming problem as above 
for what to call a light fence). 

- Decide that both heavy and light fences are types of fence, but specifically exclude light 
fences from the requirements of [atomics.fences]. 

- Change the existing usage of “fence” to (something like) “plain fence”. This lets us 
introduction a “fence” category including both “plain fences” and “asymmetric fences”, 
whose intersection is “heavy asymmetric fences”. This makes the asymmetric fence 
wording trickier to read in TS form, and makes the term “fence” vague if it’s unclear if the 
context is “IS + TS” or “just IS”. 

 
The wording below takes the first approach, calling the two asymmetric fence types “lfence” and 
“hfence”. 



 

Legalese 

Asymmetric fences [atomics.fences.asymmetric] 
This section introduces synchronization primitives called hfences and lfences. Like fences, 
hfences and lfences can have acquire semantics, release semantics, or both, and may be 
sequentially consistent (in which case they are included in the total order S on 
memory_order::seq_cst operations). 
 
If there are evaluations A and B, and atomic operations X and Y, both operating on some atomic 
object M, such that A is sequenced before X, X modifies M, Y is sequenced before B, and Y 
reads the value written by X or a value written by any side effect in the hypothetical release 
sequence X would head if it were a release operation, and one of the following hold: 

- A is a release lfence and B is an acquire hfence; or 
- A is a release hfence and A is an acquire lfence 

then any evaluation sequenced before A strongly happens before any evaluation that B is 
sequenced before. 
 
If there are evaluations A and B, and atomic operations X and Y, both operating on some atomic 
object M, such that A is sequenced before X, X modifies M, Y is sequenced before B, and Y 
reads the value written by X or a value written by any side effect in the hypothetical release 
sequence X would head if it were a release operation, and one of the following hold: 

- A is a release fence and B is an acquire hfence; or 
- A is a release hfence and B is an acquire fence; or 
- A is a release hfence and B is an acquire hfence 

then A synchronizes with B. 
 
For every pair of atomic operations A and B on an object M, where A is coherence-ordered 
before B, the total order S on all memory_order::seq_cst operations obeys the following 
properties: 

- if A is a memory_order::seq_cst operation and B happens before a 
memory_order::seq_cst hfence Y, then A precedes Y in S; and 

- if a memory_order::seq_cst hfence X happens before A and B is a 
memory_order::seq_cst operation, then X precedes B in S; and 

- if a memory_order::seq_cst lfence X happens before A and B happens before a 
memory_order::seq_cst hfence Y, then X precedes Y in S; and 

- if a memory_order::seq_cst hfence X happens before A and B happens before a 
memory_order::seq_cst lfence Y, then X precedes Y in S; and 

- if a memory_order::seq_cst hfence X happens before A and B happens before a 
memory_order::seq_cst hfence Y, then X precedes Y in S. 

 



[ Note: the constraints implied by a fence and an hfence, or by two hfences, are the same as 
would be implied by replacing hfences by fences with the same memory_order. ] 
 
[ Note: The requirements that the strongly happens before relation places on S are not relaxed 
for hfences or lfences. ] 
 

void asymmetric_thread_fence_heavy(memory_order order) noexcept; 

 
Effects: Depending on the value of `order`, this operation: 

- Has no effects, if `order == memory_order::relaxed` 
- Is an acquire hfence, if `order == memory_order_acquire` or `order == 

memory_order_consume` 
- Is a release hfence, if `order == memory_order::release` 
- Is both an acquire and a release hfence, if `order == memory_order_acq_rel` 
- Is a sequentially consistent acquire and release hfence, if `order == 

memory_order_seq_cst` 
 

void asymmetric_thread_fence_light(memory_order order) noexcept; 

 
Effects: Depending on the value of `order`, this operation: 

- Has no effects, if `order == memory_order_relaxed` 
- Is an acquire lfence, if `order == memory_order_acquire` or `order == 

memory_order_consume` 
- Is a release lfence, if `order == memory_order_release` 
- Is both an acquire and a release lfence, if `order == memory_order_acq_rel` 
- Is a sequentially consistent acquire and release lfence, if `order == 

memory_order_seq_cst` 
 
[ Note: Delegating both heavy and light fence functions to an atomic_thread_fence(order) 
call with is a valid implementation. ] 

Correctness 
We’re interested in two implementations: those that use truly asymmetric techniques, and those 
that fall back to plain fences (i.e. replacing both the light and heavy fences with their 
non-asymmetric counterparts). The former is needed for the performance improvement we’re 
seeking, and the latter is needed for portability. 
 
(In this section, arguments are relative to the wording after the merge of P0668). 



Plain fence implementation 
The acquire/release guarantees between heavy and heavy, or heavy and plain fences are the 
same as for plain fences. Moreover, a release fence synchronizes with an acquire fence, and 
therefore simply happens before it, and so evaluations sequenced before the release fence 
strongly happen before those sequenced after the acquire fence, which is the guarantee that 
heavy/light fences provide. 
 
The SC operations fall out of the existing definitions easily; in all cases, we’ve just taken existing 
wording and applied it to either fence/hfence pairs or lfence/hfence pairs. 

Asymmetric implementations 
Here, “light fence” and “heavy fence” refer to the true asymmetric implementations, while lfence 
and hfence refer to the actions in the memory model whose semantics we want to justify in 
terms of those underlying implementations. 
 
Consider a light (resp. heavy) fence A and a heavy (resp. light) fence B, and suppose that there 
are atomic operations X and Y, both operating on some atomic object M, such that A is 
sequenced before X, X modifies M, Y is sequenced before B, and Y reads the value written by X 
(or blah blah blah release sequences; the argument below will work even with modification 
order). 
 
Either everything sequenced before A strongly happens before everything B is sequenced 
before, or everything sequenced before B strongly happens before everything A is sequenced 
before (from the “Relationship Between Light and Heavy Fences” section). If the latter, then Y 
strongly happens before X, and therefore could not have obtained its value from X or any 
subsequent operation in M’s modification order. So we must be working in the former case, 
which is exactly the postcondition we want to establish. 
 
The SC postconditions are trickier to justify; we’ll use the trick from the “Strengthening the 
guarantees” subsection, and note that we can place an SC fence before the heavy side of the 
asymmetric implementation (or at least, imagine that we have; implementations can of course 
do whatever they want). This ensures that heavy fences interact with one another and with plain 
fences just as a plain fence in the same spot would. This in turn implies all the SC 
postconditions that do not involve lfences. 
 
In the same subsection, we argued that we can assume that the synchronization point of heavy 
fences in every light thread’s execution stream occurred in the same order as the order of their 
preceding plain SC fences. So, for each light fence L on a thread T, we can assume there is 
some last (in the SC ordering) heavy fence that has its synchronization point with T before L, 
and the next heavy fence (again, in the SC ordering) has its synchronization point with T after L. 
We can place the lfence associated with a given light fence at any point in the SC ordering 



between those two heavy fences; the location of an lfence in the SC ordering is not otherwise 
observable by the postconditions we provide. 


