
N. Josuttis: P1164R1: make create_directry() intuitive

 1

Project: ISO JTC1/SC22/WG21: Programming Language C++
Doc No: WG21 P1164R1
Date: 2019-02-22
Reply to: Nicolai Josuttis (nico@josuttis.de)
Audience: LWG
Prev. Version: P1164R0

Make	create_directory()	intuitive	
(so	that	it	is	always	an	error,	if	there	is	already	
		a	file	that	is	no	directory)	
https://wg21.link/lwg2935 was resolved so that it is not an error if calling create_directory() or
create_directories() fails, because at the passed path there is already a file that is not a directory.

This is highly counter-intuitive and a source of trouble.

In addition note that it is an error, if any filename other than the trailing filename exists and is not a
directory. Thus, for

 create_directory(“a/b/c”)

or

 create_directories(“a/b/c”)

we get

 Error if a exists and is not a directory
 Error if b exists and it not a directory
 No error if c exists and it not a directory

So, we should add back the postcondition that after a successful call is_directory(p) is true.

Benefits	of	the	proposed	fix	
If we make the change proposed here, we get a lot of benefits:

 Intuitive and self-explanatory behavior

 An easy way to handle the problem already having a non-directory directly at the location where
the problem occurs instead f getting strange errors or side-effects later on

o Programmers can implement

create_directory(p)

… // perform a lot of stuff assuming the call went well

ofstream f(p / “data.txt”);

if (!f) {

 … // handle problems with opening the file

}

without the problem that they see a confusing error message at a later stage, which they
would have to avoid with code like:

create_directory(p)

… // perform a lot of stuff assuming the call went well

ofstream f(p / “data.txt”);

if (!f) {

 if (!is_directory(p)) {

 throw ???? // handle error if create_directory() failed

 }

 … // handle problems with opening the file

}

N. Josuttis: P1164R1: make create_directry() intuitive

 2

or:

if (!create_directory(p) && !is_directory(p)) {

 throw ???? // error handling if this is a consequence of a failed previous
call

… // perform a lot of stuff assuming the call went well

ofstream f(p / “data.txt”);

if (!f) {

 … // handle problems with opening the file

}

 Consistent error handling if different filenames in the path exist as non-directory

Counter	Arguments	
There were arguments to resolve the issues at done, which we would like to comment:

 The postcondition to have a directory there anyway might be broken due to a data race with other
calls dealing with the same path.

o In general, this is true, but this can’t be an argument to accept non-intuitive behavior
even if no data race occurs. Otherwise we can argue that any postcondition of any call
doesn’t make any sense at all.

o If according to the context or situation a data race does not happen, the call should do
the expected right thing. This applies to environments where no data race is possible as
well as situations where data races are usually avoided (people are used to have
different directories for different tasks/persons/applications to avoid problems like this).

 The underlying operating system does not support this case directly so that another OS call is
necessary.

o Note that in the good case if the call succeeds and created a new directory no additional
OS call is necessary. Only if the OS call to create the directory failed, an additional check
might be necessary to find out whether there is already something else. That is, internally
the call has to perform in addition something like:

if (createDirectoryFailed && !is_directory(p)) {

 … // corresponding error handling

}

Which	error	condition	should	be	used?	
There are two options:

1. Make this implementation-defined
2. Use errc::not_a_directory (errno ENOTDIR)

Discuss: We propose option 1.

This should be a defect against C++17.

 	

N. Josuttis: P1164R1: make create_directry() intuitive

 3

Proposed	Wording	
 (All against N4800)

Make the following edits to 28.11.14.6 [fs.op.create_directories]:

 bool create_directories(const path& p);
 bool create_directories(const path& p, error_code& ec) noexcept;

-1- Effects: Calls create_directory() for each element of p that does not exist.

-2- Returns: true if a new directory was created for the directory p resolves to, otherwise false.
The signature with argument ec returns false if an error occurs.

-3- Throws: As specified in 28.11.6 [fs.err.report].

-4- Complexity: (n) where n is the number of elements of p.

Make the following edits to 28.11.14.7 [fs.op.create_directory]:

 bool create_directory(const path& p);
 bool create_directory(const path& p, error_code& ec) noexcept;

-1- Effects: Creates the directory p resolves to, as if by POSIX mkdir() with a second argument
of static_cast<int>(perms::all). Creation failure because p already exists is not an
error. If mkdir() fails because p resolves to an existing directory, no error is reported.
Otherwise on failure an error is reported.

-2- Returns: true if a new directory was created, otherwise false. The signature with argument
ec returns false if an error occurs.

-3- Throws: As specified in 28.11.6 [fs.err.report].

 bool create_directory(const path& p, const path& existing_p);
 bool create_directory(const path& p, const path& existing_p,
 error_code& ec) noexcept;

-4- Effects: Create the directory p resolves to, with attributes copied from directory existing_p.
The set of attributes copied is operating system dependent. Creation failure because p resolves
to an existing directory shall not be treated as an error. If mkdir() fails because p already
resolves to an existing directory, no error is reported. Otherwise on failure an error is reported.
[Note: For POSIX-based operating systems, the attributes are those copied by native
API stat(existing_p.c_str(), &attributes_stat) followed by mkdir(p.c_str(), attributes_-
stat.st_mode). For Windows-based operating systems, the attributes are those copied by native
API CreateDirectoryExW(existing_p.c_str(), p.c_str(), 0). —end note]

-5- Returns: true if a new directory was created with attributes copied from directory
existing_p, otherwise false.

-6- Throws: As specified in 28.11.6 [fs.err.report].

