
Re-Gaining Exclusive Ownership from shared ptrs

Document #: P1116R0
Date: June 17, 2019
Project: Programming Language C++

SG1 (for implementability)
Library Evolution Working Group (for API review)

Reply-to: Marc Mutz <marc.mutz@kdab.com>

Abstract

We propose to add a function, lock exclusive(), to shared ptr to re-gain exclusive owner-
ship of the payload. Exclusive ownership is defined as a sole shared ptr owning, combined with
no weak ptrs referencing, the resource. The reason to exclude weak ptrs is that the presence of
a weak ptr (e.g. in a separate thread of execution) could materialize new shared ptrs at any
time, which would invalidate the exclusive ownership state.

The primary use-case is efficient copy-on-write implementations using shared ptr<const

T> to hide the details of ref-counting, a la Sean Parent’s document example from [S.Parent]. As
long as the objects involved are immutable, mutation is performed by copying from the existing
state and modifying the state before storing in the new shared ptr<const T>. The existing
unique() function is not sufficient for this purpose, because it does not take the existence of
associated weak ptrs into account, which could materialize new shared ptrs at any time from
a different thread.

Contents

1 Motivation and Scope 2
1.1 Efficient Copy-on-Write . 2
1.2 Implementability . 3

2 Impact on the Standard 4

3 Proposed Wording 4
3.1 Changes to [N4810] . 4
3.2 Feature Macro . 5

4 Design Decisions 5
4.1 Why shared ptr? . 5
4.2 Dealing with weak ptrs . 5
4.3 Return Type . 5
4.4 Alternative Function Names . 6
4.5 Atomic Shared Pointers . 6

1

mailto:marc.mutz@kdab.com

5 References 6

1 Motivation and Scope

1.1 Efficient Copy-on-Write

Sean Parent, in [S.Parent], introduced a pattern of using shared ptr<const T> to share common
data between different versions of a document, without the need to deep copy. In this way, he can
implement undo as a simple vector<document> even with very large documents.

shared ptr<const T> works well for this as long as one works with immutable objects. But it
is well-known that actions1 can often be more efficient than transformations2, so immutability of
objects may not always be desired.

Let’s look at a typical mutator of a class that uses shared ptr<const T> to store data:

Listing 1: Typical mutator of a class that uses shared ptr<const T>

shared_ptr <const Data > m_data;

void set_foo(T foo) {

auto uniq = clone_or_new(m_data);

uniq ->foo = std::move(foo);

m_data = std::move(uniq);

}

where clone or new might be implemented like this:

Listing 2: Inefficient implementation of clone or new()

static auto clone_or_new(const shared_ptr <const Data > & sp) {

return sp ? make_shared <Data >(*sp) : make_shared <Data >();

}

This is the classical copy-on-write implementation, with a drawback: every setter allocates, even if
it just sets an int field. This is clearly not acceptable in a production-quality implementation, in
particular for APIs that employ something like Qt’s [Qt] Property-Based Design [API], which calls
for preferring setters over long lists of contructor arguments:

Listing 3: Comparison between Qt 3 and Qt 4 slider creation
// Qt 3:

QSlider qt3(0, 100, 50, 10); // allocs once , but unreadable

// Qt 4+:

QSlider slider; // allocates , because all properties

// have defined defaults

slider.setRange(0, 100); // would allocate

slider.setPageStep (10); // would allocate

slider.setValue (50); // would allocate

1modifying an object’s state in-place
2copying an object’s state, making changes, and then creating a new object with the new state, leaving the old

object alone

2

The obvious optimisation is to not create a new copy of the data if we’re the sole owner:

Listing 4: clone or new() using unique()

static auto clone_or_new(shared_ptr <const Data > & sp) {

return sp.unique () ? const_ptr_cast <Data >(std::move(sp)) :

sp ? make_shared <Data >(*sp) :

/* else */ make_shared <Data >() ;

}

But this fails in multithreaded contexts, as shared ptr::unique() is only approximate. Besides,
shared ptr::unique() is deprecated as of C++17.

The problem, of course, is that a new strong reference may be created as a copy of sp in between
the calls to unique() and the move from sp, which will lead to a data race on sp->foo further
down the road, as the return value of clone or new() is assumed, by set foo(), to represent an
exclusive owner.

We could try to define the problem away: assuming sp.unique() returns true, we’re looking at
the sole remaining strong reference. While the non-const function set foo() executes, we can
assume that no new copies of sp are taken, because the only way to do so would be from another
thread. We can declare such use to be outside the contract of the function, along the lines of “to
call mutators, you need to externally synchronise” as part of a “const access is thread-safe” policy.

And this view would be correct if it wasn’t for weak ptr, which can upgrade to a strong reference
at any time.

It follows that the condition for when we are able to re-use the existing shared ptr in clone or new

is not unique() == true, but “weak reference count is one”, iow: we control the only shared ptr

and there are no weak ptrs registered with it. But we have no API to check for this implementation
detail of shared ptr.

Enter shared ptr::lock exclusive().

This function returns a new owning pointer that represents the sole owner of the data, setting
*this to nullptr upon success. The effects are atomic.

Our example function then becomes:

Listing 5: clone or new() using lock exclusive()

static auto clone_or_new(shared_ptr <const Data > & sp) {

auto uniq = const_pointer_cast <Data >(sp.lock_exclusive ());

if (!uniq)

uniq = sp ? make_shared <Data >(*sp) : make_shared <Data >();

return uniq;

}

1.2 Implementability

All implementations the authors have have come across share the split into a weak reference count,
ref-counting the control block, and a strong reference count, ref-counting the lifetime of the payload
object.

3

In all implementations, except QSharedPointer, the set of all shared ptr instances are counted
as one (1) in the weak reference count.

The condition for when lock exclusive() succeeds is thus weak ref == 1 && strong ref == 1.

Proof: Since strong ref == 1, there is exactly one shared ptr (*this). Since weak ref == 1,
there is either one weak ptr and no shared ptr (contradicting the existence of *this), or there
is at least one shared ptr and no weak ptrs. Taken together, it follows that there is exactly one
shared ptr (*this) and no weak ptrs. �

A simple simultaneous relaxed atomic load of weak ref and strong ref suffices to check for exclu-
sive ownership, since taking a new copy of *this while a non-const member function is executing is
already undefined behaviour, so the implementation of lock exclusive() can assume that when
weak ref contains 1, it will stay that way for the remainder of the function.

No stronger memory ordering than relaxed is needed, either, since we don’t touch the referenced
data, in fact we change nothing except swapping pointers from *this to the return value.

The advantage of this implementation is that only lock exclusive() needs to be added; all other
operations, including shared ptr/weak ptr and weak ptr/shared ptr conversions, can remain
unchanged.

NB: We’d like to ask for guidance from implementers about the general feasibility of this. The im-
plementation sketched above requires a double-word relaxed atomic load to simultaneously determine
that weak refs == 1 and strong refs == 1, to exclude a second thread permanently converting
shared ptrs into weak ptrs and vice versa. Maybe there are other protocols that can be used on
platforms without double-word atomic operations?

2 Impact on the Standard

Minimal. We propose to add a new member function to shared ptr. No other part of the standard
is affected.

3 Proposed Wording

3.1 Changes to [N4810]

In section [util.smartptr.shared]:

• at the end of paragraph (1), before the synopsis, continue the last sentence with

[does not own a pointer], and to be an exclusive owner if it shares ownership
with no other shared ptr and there are no weak ptr objects referring to it.

• at the end of modifiers section, add the function

[[nodiscard]] shared ptr lock exclusive() noexcept;

4

https://wg21.link/util.smartptr.shared

In section [util.smartptr.shared.mod]:

• add new paragraph at the end:

[[nodiscard]] shared ptr lock exclusive() noexcept;

– Returns: std::move(*this) if *this is an exclusive owner (insert reference
to [util.smartptr.shared]/1), otherwise returns {}. This function executes
atomically.

– Synchronization: none.

3.2 Feature Macro

We propose to use a new macro, cpp lib shared ptr lock exclusive, to indicate a library’s
support for this feature.

4 Design Decisions

4.1 Why shared ptr?

One legitimate question is: why put this functionality into shared ptr instead of inventing a new
type (pair of types)? In particular, the difficulties of dealing with weak ptr, which is probably not
used at all with shared ptrs that are used for copy-on-write, make inventing a new pair of types
to represent shared and unique ownership attractive. However, there is the problem with names.
What to call such new types if shared ptr and unique ptr are already taken? Also, shared ptr

is probably already in use for CoW systems, so adding the functionality there, even if not enitrely
trivial, probably gives the biggest bang for the buck.

That said, we are open to explore the alternative with two different types as well, should LEWG
prefer that approach.

4.2 Dealing with weak ptrs

If, for the use-cases in which lock exclusive() is useful, we do not envision use of weak ptr at
all, why not make calling lock exclusive() in the presence of associated weak ptrs undefined
behaviour?

This is an attractive option, too, since it would mean that implementations would become easier.
In this case, we would not need lock exclusive() at all, though, since we could just un-deprecate
unique() instead and use the implementation in Listing 4.

4.3 Return Type

To represent unique ownership, we customarily use unique ptr, so lock exclusive() could con-
ceivably return a unique ptr. But shared ptr’s custom, type-erased deleter and the make shared

5

https://wg21.link/util.smartptr.shared.mod
https://wg21.link/util.smartptr.shared

optimization of co-locating the control block and the payload object in a single memory allocation
make this unrealistically complex: The unique ptr returned would need to have some form of
type-erased deleter template argument, making it effectively a different type from unique ptr, and
mostly layout-compatible with a shared ptr.

4.4 Alternative Function Names

We have chosen to call the function lock exclusive() to piggy-back on the existing weak ptr::lock()

function, which performs a similar (in particular, atomic), but different task. The exclusive part
is intended to show that what is returned is an exclusive owner, if any, of the payload data. The
word ”exclusive” has been chosen over ”unique” to avoid unwanted connotation with unique ptr.

Alternatives considered include:

unique() This would have been the first choice if it wasn’t already taken to mean strong ref ==

1. The name also has said unwanted connotation with unique ptr, though.

lock unique() Not preferred for the unwanted connotation with unique ptr. Would be a good
choice if lock exclusive() returned an actual unique ptr, though.

release() For symmetry with unique ptr::release(); but we do not release the resource here,
but merely conditionally move it into a new shared ptr.

4.5 Atomic Shared Pointers

std::atomic<shared ptr>, as added for C++20, is merely a container for shared ptrs; they are
not themselves shared ptrs. E.g. std::atomic<weak ptr> does not have a ::lock() member
function. We therefore do not propose to add lock exclusive() to std::atomic<shared ptr>,
even though it would probably benefit some use-cases.

5 References

[S.Parent] Sean Parent
C++ Seasoning
in: Going Native 2013
https://channel9.msdn.com/Events/GoingNative/2013/Cpp-Seasoning

[Qt] http://www.qt.io

[API] Property-Based APIs
in: Qt Wiki: API Design Principles
https://wiki.qt.io/API_Design_Principles#Property-Based_APIs

[N4810] Richard Smith (editor)
Working Draft: Standard for Programming Language C++
http://wg21.link/N4810

6

https://channel9.msdn.com/Events/GoingNative/2013/Cpp-Seasoning
http://www.qt.io
https://wiki.qt.io/API_Design_Principles#Property-Based_APIs
http://wg21.link/N4810

	Motivation and Scope
	Efficient Copy-on-Write
	Implementability

	Impact on the Standard
	Proposed Wording
	Changes to cpp2a
	Feature Macro

	Design Decisions
	Why shared_ptr?
	Dealing with weak_ptrs
	Return Type
	Alternative Function Names
	Atomic Shared Pointers

	References

