
Improving the Return Value of Erase-Like Algorithms II:

Free erase/erase if

Document #: P1115R0
Date: June 17, 2019
Project: Programming Language C++

Library Working Group
Reply-to: Marc Mutz <marc.mutz@kdab.com>

Abstract

We propose to change the return type of erase() and erase if() free functions from
void to <container> ::size type, returning the number of elements removed. This restores
consistency with long-established API, such as map/set::erase(key type), as well as the recent
changes to forward /list::remove().

Contents

0 Change History 1
0.1 Changes from P0646R0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Motivation and Scope 2
1.1 [[nodiscard]] Useful Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Impact on the Standard 2

3 Proposed Wording 3
3.1 Feature Test Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Design Decisions 4
4.1 size t vs. size type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.2 Performance Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5 Acknowledgements 5

1

mailto:marc.mutz@kdab.com


0 Change History

This is a spin-off and revision of P0646R0 at the request of LWG in Rapperswil to work around
the problem of LFv3 not having opened shop in Rapperswil, yet.

0.1 Changes from P0646R0

1. Removed changes to the IS draft, as these continued as P0646R1 (which has since been
adopted in Rapperswil).

2. Changed the return type from size t to <container> ::size type, as requestd by LEWG
in Toronto.

3. Rebased on IS draft, as the target of this proposal has since been merged into it from the
LFv2 TS.

4. Added feature test macro.

1 Motivation and Scope

This section is copied from P0646R1, so readers familiar with that paper can skip these paragraphs.

1.1 [[nodiscard]] Useful Information

Alexander Stepanov, in his A9 courses[A9], teaches us not to throw away useful information, but
instead return it from the algorithm.

With that in mind, look at the following example:

std:: forward_list <std:: shared_ptr <T>> fl = ...;

erase(fl , nullptr );

Did erase() erase anything? We don’t know. The only way we can learn whether the algorithm
removed something is to check the size of the list before and after the algorithm run. For most
containers, that is a valid option, and fast. All size() methods of STL containers are O(1) these
days.

But std::forward list has no size(). . .

We therefore propose to make the algorithms return the number of removed elements. While it is
only really necessary for forward list, we believe that consistency here is more important than
minimalism.

Returning the number of elements also enables convenient one-line checks:

if (erase(fl, nullptr )) {

// erased some

}

2

https://wg21.link/P0646R0
https://wg21.link/P0646R1
https://wg21.link/P0646R1


1.2 Consistency

In Rapperswil, the committee accepted P0646R1, which changed the list and forward list mem-
ber algorithms remove/ if and unique to return the number of elements erased. This paper applies
the same logic to the non-member versions of these algorithms.

We note that the associative containers have returned the number of erased elements from their
erase(key type) member functions since at least [SGI STL]. This proposal therefore also restores
lost consistency with existing practice.

2 Impact on the Standard

Minimal. We propose to change the return value of library functions from void to size type.
Existing users of the LFv2 versions expecting no return value can continue to ignore it. In particular,
this is one of the changes explicitly mentioned in [P0921R2].

Strictly speaking, the change is source-incompatible: Existing code which assumes that the algo-
rithms return void might fail to compile. This can e.g. come up in situations where the C++
user explicitly specialized these algorithms. However, all such code will so far have used the LFv2
versions of these algorithms, which are in a different namespace.

For the same reason, there is no binary-compatibility issue here: the algorithms in LFv2 were
specified in namespace std::experimental, while the changed algorithms will be in std directly.

3 Proposed Wording

The following changes are relative to [N4810]:

• In [support.limits.general], Table 36, adjust the listed Value of ” cpp lib erase if” to
match the date of application of this paper to the IS draft.

• In each of [string.syn], [string.erasure],
[deque.syn], [forward.list.syn], [list.syn], [vector.syn],
[deque.erasure], [forward.list.erasure], [list.erasure], [vector.erasure],
[associative.map.syn], [associative.set.syn], [unord.map.syn], [unord.set.syn],
[map.erasure], [multimap.erasure], [set.erasure], [multiset.erasure],
[unord.map.erasure], [unord.multimap.erasure],
[unord.map.erasure], [unord.multiset.erasure]:

For each erase(<container> & c, ...) and erase if(<container> & c, ...) function,
change the return type from void to typename <container> ::size type.

• In each of [string.erasure], [deque.erasure], [vector.erasure], change paragraphs 1 as
follows:

- Effects: Equivalent to: c.erase(remove(c.begin(), c.end(), pred), c.end ());

+ Effects: Equivalent to:

3

https://wg21.link/P0646R1
https://wg21.link/support.limits.general
https://wg21.link/string.syn
https://wg21.link/string.erasure
https://wg21.link/deque.syn
https://wg21.link/forward.list.syn
https://wg21.link/list.syn
https://wg21.link/vector.syn
https://wg21.link/deque.erasure
https://wg21.link/forward.list.erasure
https://wg21.link/list.erasure
https://wg21.link/vector.erasure
https://wg21.link/associative.map.syn
https://wg21.link/associative.set.syn
https://wg21.link/unord.map.syn
https://wg21.link/unord.set.syn
https://wg21.link/map.erasure
https://wg21.link/multimap.erasure
https://wg21.link/set.erasure
https://wg21.link/multiset.erasure
https://wg21.link/unord.map.erasure
https://wg21.link/unord.multimap.erasure
https://wg21.link/unord.map.erasure
https://wg21.link/unord.multiset.erasure
https://wg21.link/string.erasure
https://wg21.link/deque.erasure
https://wg21.link/vector.erasure


+ auto it = remove(c.begin(), c.end(), pred);

+ auto r = distance(it , c.end ());

+ c.erase(it , c.end ());

+ return r;

• In each of [string.erasure], [deque.erasure], [vector.erasure], change paragraphs 2 as
follows:

- Effects: Equivalent to: c.erase(remove_if(c.begin(), c.end(), pred), c.end ());

+ Effects: Equivalent to:

+ auto it = remove_if(c.begin(), c.end(), pred);

+ auto r = distance(it , c.end ());

+ c.erase(it , c.end ());

+ return r;

• In each of [forward.list.erasure], [list.erasure], in paragraphs 1 and 2, add “return ”
between “Equivalent to:” and the start of the code.

• In each of [map.erasure], [multimap.erasure], [set.erasure], [multiset.erasure],
[unord.map.erasure], [unord.multimap.erasure], [unord.map.erasure],
[unord.multiset.erasure]:

Change paragraphs 1 as indicated:

+ typename <container >:: size_type res = 0;

for (auto i = c.begin(), last = c.end (); i != last; ) {

if (pred(*i)) {

i = c.erase(i);

+ ++res;

} else {

++i;

}

}

+ return res;

where <container> is as follows:

– in [map.erasure]: map<Key, T, Compare, Allocator>

– in [multimap.erasure]: multimap<Key, T, Compare, Allocator>

– in [set.erasure]: set<Key, Compare, Allocator>

– in [multiset.erasure]: multiset<Key, Compare, Allocator>

– in [unord.map.erasure]: unordered map<K, T, H, P, A>

– in [unord.multimap.erasure]: unordered multimap<K, T, H, P, A>

– in [unord.set.erasure]: unordered set<K, T, H, P, A>

– in [unord.multiset.erasure]: unordered multiset<K, T, H, P, A>

4

https://wg21.link/string.erasure
https://wg21.link/deque.erasure
https://wg21.link/vector.erasure
https://wg21.link/forward.list.erasure
https://wg21.link/list.erasure
https://wg21.link/map.erasure
https://wg21.link/multimap.erasure
https://wg21.link/set.erasure
https://wg21.link/multiset.erasure
https://wg21.link/unord.map.erasure
https://wg21.link/unord.multi\discretionary {-}{}{}map.erasure
https://wg21.link/unord.map.erasure
https://wg21.link/unord.multiset.erasure
https://wg21.link/map.erasure
https://wg21.link/multimap.erasure
https://wg21.link/set.erasure
https://wg21.link/multiset.erasure
https://wg21.link/unord.map.erasure
https://wg21.link/unord.multimap.erasure
https://wg21.link/unord.set.erasure
https://wg21.link/unord.multiset.erasure


3.1 Feature Test Macro

No new macro is necessary.

4 Design Decisions

4.1 size t vs. size type

Should we return <container> ::size type or std::size t from these functions? P0646R0 chose
size t, for brevity, but LEWG in Toronto favoured size type, so this is what’s proposed now.

4.2 Performance Considerations

Please refer to P0646R0 for a detailed analysis. TL;DR: We believe that returning the number of
elements removed pessimises callers that don’t need it.

5 Acknowledgements

We thank the reviewers of draft versions of the original proposal and the participants of the as-
sociated discussion on std-proposals@isocpp.org and LWG in Rapperswil for their input: Sean
Parent, Arthur O’Dwyer, Nicol Bolas, Ville Voutilainen, Casey Carter, Milian Wolff, André Somers.
All remaining errors are ours.

References

[A9] Alexander Stepanov et al.
Four Algorithmic Journeys / Efficient Programming With Components / Programming Con-
versations
https://www.youtube.com/user/A9Videos/playlists?view=1

[SGI STL] Alexander Stepanov et al.
Associative Container
in: Standard Template Library Programmer’s Guide
https://www.sgi.com/tech/stl/AssociativeContainer.html (accessed 2017-06-01)

[N4810] Richard Smith (editor)
Working Draft: Standard for Programming Language C++
http://wg21.link/N4810

[P0921R2] Titus Winters
Standard Library Compatibility
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0921r2.pdf

5

https://wg21.link/P0646R0
https://wg21.link/P0646R0
std-proposals@isocpp.org
https://www.youtube.com/user/A9Videos/playlists?view=1
https://www.sgi.com/tech/stl/AssociativeContainer.html
http://wg21.link/N4810
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0921r2.pdf

	Change History
	Changes from P0646R0

	Motivation and Scope
	[[nodiscard]] Useful Information
	Consistency

	Impact on the Standard
	Proposed Wording
	Feature Test Macro

	Design Decisions
	size_t vs. size_type
	Performance Considerations

	Acknowledgements

