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Abstract

We propose to change the return type of erase() and erase if() free functions from
void to <container> ::size type, returning the number of elements removed. This restores
consistency with long-established API, such as map/set::erase(key type), as well as the recent
changes to forward /list::remove().
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0 Change History

This is a spin-off and revision of P0646R0 at the request of LWG in Rapperswil to work around
the problem of LFv3 not having opened shop in Rapperswil, yet.

0.1 Changes from P0646R0

1. Removed changes to the IS draft, as these continued as P0646R1 (which has since been
adopted in Rapperswil).

2. Changed the return type from size t to <container> ::size type, as requestd by LEWG
in Toronto.

3. Rebased on IS draft, as the target of this proposal has since been merged into it from the
LFv2 TS.

4. Added feature test macro.

1 Motivation and Scope

This section is copied from P0646R1, so readers familiar with that paper can skip these paragraphs.

1.1 [[nodiscard]] Useful Information

Alexander Stepanov, in his A9 courses[A9], teaches us not to throw away useful information, but
instead return it from the algorithm.

With that in mind, look at the following example:

std:: forward_list <std:: shared_ptr <T>> fl = ...;

erase(fl , nullptr );

Did erase() erase anything? We don’t know. The only way we can learn whether the algorithm
removed something is to check the size of the list before and after the algorithm run. For most
containers, that is a valid option, and fast. All size() methods of STL containers are O(1) these
days.

But std::forward list has no size(). . .

We therefore propose to make the algorithms return the number of removed elements. While it is
only really necessary for forward list, we believe that consistency here is more important than
minimalism.

Returning the number of elements also enables convenient one-line checks:

if (erase(fl, nullptr )) {

// erased some

}
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1.2 Consistency

In Rapperswil, the committee accepted P0646R1, which changed the list and forward list mem-
ber algorithms remove/ if and unique to return the number of elements erased. This paper applies
the same logic to the non-member versions of these algorithms.

We note that the associative containers have returned the number of erased elements from their
erase(key type) member functions since at least [SGI STL]. This proposal therefore also restores
lost consistency with existing practice.

2 Impact on the Standard

Minimal. We propose to change the return value of library functions from void to size type.
Existing users of the LFv2 versions expecting no return value can continue to ignore it. In particular,
this is one of the changes explicitly mentioned in [P0921R2].

Strictly speaking, the change is source-incompatible: Existing code which assumes that the algo-
rithms return void might fail to compile. This can e.g. come up in situations where the C++
user explicitly specialized these algorithms. However, all such code will so far have used the LFv2
versions of these algorithms, which are in a different namespace.

For the same reason, there is no binary-compatibility issue here: the algorithms in LFv2 were
specified in namespace std::experimental, while the changed algorithms will be in std directly.

3 Proposed Wording

The following changes are relative to [N4810]:

• In [support.limits.general], Table 36, adjust the listed Value of ” cpp lib erase if” to
match the date of application of this paper to the IS draft.

• In each of [string.syn], [string.erasure],
[deque.syn], [forward.list.syn], [list.syn], [vector.syn],
[deque.erasure], [forward.list.erasure], [list.erasure], [vector.erasure],
[associative.map.syn], [associative.set.syn], [unord.map.syn], [unord.set.syn],
[map.erasure], [multimap.erasure], [set.erasure], [multiset.erasure],
[unord.map.erasure], [unord.multimap.erasure],
[unord.map.erasure], [unord.multiset.erasure]:

For each erase(<container> & c, ...) and erase if(<container> & c, ...) function,
change the return type from void to typename <container> ::size type.

• In each of [string.erasure], [deque.erasure], [vector.erasure], change paragraphs 1 as
follows:

- Effects: Equivalent to: c.erase(remove(c.begin(), c.end(), pred), c.end ());

+ Effects: Equivalent to:
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+ auto it = remove(c.begin(), c.end(), pred);

+ auto r = distance(it , c.end ());

+ c.erase(it , c.end ());

+ return r;

• In each of [string.erasure], [deque.erasure], [vector.erasure], change paragraphs 2 as
follows:

- Effects: Equivalent to: c.erase(remove_if(c.begin(), c.end(), pred), c.end ());

+ Effects: Equivalent to:

+ auto it = remove_if(c.begin(), c.end(), pred);

+ auto r = distance(it , c.end ());

+ c.erase(it , c.end ());

+ return r;

• In each of [forward.list.erasure], [list.erasure], in paragraphs 1 and 2, add “return ”
between “Equivalent to:” and the start of the code.

• In each of [map.erasure], [multimap.erasure], [set.erasure], [multiset.erasure],
[unord.map.erasure], [unord.multimap.erasure], [unord.map.erasure],
[unord.multiset.erasure]:

Change paragraphs 1 as indicated:

+ typename <container >:: size_type res = 0;

for (auto i = c.begin(), last = c.end (); i != last; ) {

if (pred(*i)) {

i = c.erase(i);

+ ++res;

} else {

++i;

}

}

+ return res;

where <container> is as follows:

– in [map.erasure]: map<Key, T, Compare, Allocator>

– in [multimap.erasure]: multimap<Key, T, Compare, Allocator>

– in [set.erasure]: set<Key, Compare, Allocator>

– in [multiset.erasure]: multiset<Key, Compare, Allocator>

– in [unord.map.erasure]: unordered map<K, T, H, P, A>

– in [unord.multimap.erasure]: unordered multimap<K, T, H, P, A>

– in [unord.set.erasure]: unordered set<K, T, H, P, A>

– in [unord.multiset.erasure]: unordered multiset<K, T, H, P, A>
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3.1 Feature Test Macro

No new macro is necessary.

4 Design Decisions

4.1 size t vs. size type

Should we return <container> ::size type or std::size t from these functions? P0646R0 chose
size t, for brevity, but LEWG in Toronto favoured size type, so this is what’s proposed now.

4.2 Performance Considerations

Please refer to P0646R0 for a detailed analysis. TL;DR: We believe that returning the number of
elements removed pessimises callers that don’t need it.
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