
P1103R3

Document Number: P1103R3
Date: 2019-02-22
Reply to: Richard Smith Google

richard@metafoo.co.uk

Merging Modules

Contents
I Commentary 1

1 Background 2
1.1 Introduction . 2
1.2 Acknowledgements . 2

2 Summary of merged proposal 3
2.1 Basics . 3
2.2 Module partitions . 4
2.3 Support for non-modular code . 5

3 Comparison to prior proposals 7
3.1 Changes since R2 . 7
3.2 Changes since R1 . 7
3.3 Changes since R0 . 8
3.4 Changes to the Modules TS . 9
3.5 Changes relative to the Atom proposal . 10

II Wording 11

5 Lexical conventions 12
5.1 Separate translation . 12
5.2 Phases of translation . 12
5.4 Preprocessing tokens . 12
5.10 Identifiers . 12
5.11 Keywords . 12

6 Basic concepts 13
6.1 Declarations and definitions . 13
6.2 One-definition rule . 13
6.3 Scope . 13
6.4 Name lookup . 14
6.5 Program and linkage . 16
6.8 Program execution . 18

9 Declarations 19
9.1 Specifiers . 19
9.7 Namespaces . 20

Contents i

P1103R3

100Modules 21
100.1 Module units and purviews . 21
100.2 Export declaration . 23
100.3 Import declaration . 26
100.4 Global module fragment . 27
100.5 Instantiation context . 29
100.6 Reachability . 31

10 Classes 33
10.2 Class members . 33

11 Overloading 34
11.5 Overloaded operators . 34

12 Templates 35
12.7 Name resolution . 35

14 Preprocessing directives 39
14.1 Conditional inclusion . 39
14.2 Source file inclusion . 39
14.3 Global module fragment . 39
14.4 Header units . 40

C Compatibility 42
C.5 C++ and ISO C++ 2017 . 42

Contents ii

Part I

Design and commentary

1

P1103R3

1 Background [bg]
1.1 Introduction [bg.intro]
At the Jacksonville 2018 committee meeting, P0947R0 (“Another Take On Modules”, hereafter referred to as
Atom) was presented. Two options were polled:

— merging the Atom proposal with the Modules TS, and

— progressing the Atom proposal as a separate TS.

Both options passed, but the first option had stronger support.
At Rapperswill 2018, we presented P1103R0, representing our effort in merging the two proposals and the
remaining outstanding questions from the merge. Many open questions were answered, and we voted to adopt
the merged proposal into the Modules TS, and scheduled a 2-day ad-hoc meeting to discuss the remaining
open questions.
At the Bellevue 2018 ad-hoc Modules meeting, we answered all remaining known open design questions. This
paper provides a description for the resulting design, as well as wording (based on the wording in P1103R0,
which in turn is based on the wording of the Modules TS) to incorporate this design into the C++20 working
draft.

1.2 Acknowledgements [bg.ack]
This paper is based on the work of a great many people. The author would like to thank them all, and
specifically Gabriel Dos Reis, on whose Modules TS this paper is primarily based.

§ 1.2 2

P1103R3

2 Summary of merged proposal [merged]
2.1 Basics [merged.basic]

1 A module unit is a translation unit that forms part of a module. Such a translation unit begins with1 a
preamble, comprising a module declaration and a sequence of imports:

exportopt module foo;
import a;
export import b;
// ... more imports ...

Within a module unit, imports may not appear after the end of the preamble. The export keyword indicates
that a module unit is a module interface unit, which defines the interface for the module. For a module
foo, there must be exactly one translation unit whose preamble contains export module foo;. This is the
primary module interface unit for foo (2.2). (All other module interface units are module interface partitions;
see 2.2.)

2 Two related but distinct notions are key to understanding module semantics:

—(2.1) A declaration is visible in a context if it can be found by a suitable name lookup.

—(2.2) A declaration is reachable in a context if its semantic effects are available for use. (For example, a class
type is complete in contexts where a definition of the class is reachable.)

A declaration is reachable wherever it is visible, but the converse is not true in general. Imports control
which namespace-scope names are visible to name lookup, and which declarations are reachable semantically.
The behavior of an entity is determined by the set of reachable declarations of that entity. For example, class
members and enumeration members are visible to name lookup if there is a reachable definition of the class
or enumeration.

3 A declaration can be exported by use of the export keyword in a module interface unit:
export int a;
export {
void f();
}

Exported declarations in a module interface unit are visible to name lookup in contexts that import that
module interface unit. Non-exported declarations (excluding those with internal linkage) in a module unit
are visible to name lookup in contexts within the same module that import the module unit. All declarations
in transitively-imported module units are reachable, whether or not they are exported. [Example:

// a.cpp
export module A; // interface of module A
int foo() { return 1; }
export int bar();

// a-impl.cpp
module A; // implementation of module A, implicitly

// considered to import the interface of A

1) A global module fragment (2.3.1) may optionally precede the preamble.

§ 2.1 3

P1103R3

// OK; foo() is visible here (in the same module) even though
// it was not exported from A
int bar() { return foo() + 1; }

// unrelated.cpp
import A;
int main() {

bar(); // OK, bar was exported by A and is visible here
foo(); // error: foo is not visible here

}

—end example]
4 If a declaration within a namespace is exported, the enclosing namespace is also implicitly exported (but

other declarations in the namespace are not implicitly exported). If a namespace is explicitly exported, all
declarations within that namespace definition are exported.

2.2 Module partitions [merged.part]
1 A complete module can be defined in a single source file. However, the design, nature, and size of a module

may warrant dividing both the implementation and the interface into multiple files. Module partitions provide
facilities to support this.

2 The module interface may be split across multiple files, if desired. Such files are called module interface
partitions, and are introduced by a module declaration containing a colon:

export module foo:part;

3 Module interface partitions behave logically like distinct modules, except that they share ownership of
contained entities with the module that they form part of. This allows an entity to be declared in one
partition and defined in another, which may be necessary to resolve dependency cycles. It also permits code
to be moved between partitions of a module with no impact on ABI.

4 The primary module interface unit for a module is required to transitively import and re-export all of the
interface partitions of the module.

5 When the implementation of a module is split across multiple files, it may be desirable to share declarations
between the implementation units without including them in the module interface unit, in order to avoid all
consumers of the module having a physical dependency on the implementation details. (Specifically, if the
implementation details change, the module interface and its dependencies should not need to be rebuilt.)
This is made possible by module implementation partitions, which are module partitions that do not form
part of the module interface:

module foo:part;

6 Module implementation partitions cannot contain exported declarations; instead, all declarations within
them are visible to other translation units in the same module that import the partition. [Note: Exportation
only affects which names and declarations are visible outside the module. —end note]

7 Module implementation partitions can be imported into the interface of a module, but cannot be exported.
8 Module interface partitions and module implementation partitions are collectively known as module partitions.

Module partitions are an implementation detail of the module, and cannot be named outside the module. To
emphasize this, an import declaration naming a module partition cannot be given a module name, only a
partition name:

module foo;
import :part; // imports foo:part
import bar:part; // syntax error

§ 2.2 4

P1103R3

import foo:part; // syntax error

2.3 Support for non-modular code [merged.nonmodular]
1 This proposal provides several features to support interoperation between modular code and traditional

non-modular code.

2.3.1 Global module fragment [merged.global.frag]
1 The merged proposal permits Modules TS-style global module fragments, with the module; introducer

proposed in P0713R1 and approved by EWG:
module;
#include "some-header.h"
export module foo;
// ... use declarations and macros from some-header.h ...

2 Prior to preprocessing, only preprocessor directives can appear in the global module fragment, but those
directives can include #include directives that expand to declarations, as usual. Declarations in the global
module fragment are not owned by the module.

3 In order to avoid bloating the interface of a module with declarations included into its global module fragment,
declarations in the global module fragment that are not (transitively) referenced by the module unit are
discarded. In particular, such declarations are not reachable from other translation units that import the
module unit, and cannot be found by the second phase of two-phase name lookup for a template instantiation
whose point of instantiation is outside the module unit. A declaration in a global module fragment is
considered to be referenced if it is named within the module unit (after the preamble), or if it is mentioned
by a referenced declaration.

4 [Example:
module;
#include "some-header.h" // defines classes X, Y, Z
export module foo;

export using X = ::X; // export name X; retain all declarations
// of X from "some-header.h"

export Y f(); // export name f; retain all declarations
// of Y from "some-header.h"

// Z is not mentioned, so is discarded

—end example]

2.3.2 Header units [merged.header.import]
1 The merged proposal also permits Atom-style header units, which are introduced by a special import syntax

that names a header file instead of a module:
export module foo;
import "some-header.h";
import <version>;
// ... use declarations and macros from some-header.h and <version> ...

2 The named header is processed as if it was a source file, the interface of the header is extracted and made
available for import, and any macros defined by preprocessing the header are saved so that they can be made
available to importers.

§ 2.3.2 5

P1103R3

3 Declarations from code in a header unit are not owned by any module. In particular, the same entities can
be redeclared by another header unit or by non-modular code. Header units can be re-exported using the
regular export import syntax:

export module foo;
export import "some-header.h";

However, when a header unit is re-exported, macros are not exported. Only the header import syntax can
import macros.

2.3.3 Reachability of nonmodular declarations [merged.nonmodular.reachability]
1 A declaration in a global module fragment or header unit is reachable if it is visible. It is unspecified

whether such a declaration is also reachable in contexts where it is not visible but is transitively imported.
(Ideally, such a declaration would not be considered reachable in such contexts. However, in practice,
making transitively-imported declarations unreachable would impose a severe implementation cost for some
implementations, so we leave the extent to which this rule is enforced up to the implementation.)

2 Discarded declarations (2.3.1) from the global module fragment are never visible nor reachable from outside
that module unit.

2.3.4 Module use from non-modular code [merged.nonmodular.use]
1 Modules and header units can be imported into non-modular code. Such imports can appear anywhere,

and are not restricted to a preamble. This permits “bottom-up” modularization, whereby a library switches
to providing only a modular interface and defining its header interface in terms of the modular interface.
Non-modular code includes translation units other than module units (including headers imported as header
units), and the global module fragment of a module unit.

2 When a #include appears within non-modular code, if the named header file is known to correspond to
a header unit, the implementation treats the #include as an import of the corresponding header unit.
The mechanism for discovering this correspondence is left implementation-defined; there are multiple
viable strategies here (such as explicitly building header units and providing them as input to downstream
compilations, or introducing accompanying files describing the header unit structure) and we wish to encourage
exploration of this space. An implementation is also permitted to not provide any mapping mechanism, and
process each header unit independently.

§ 2.3.4 6

P1103R3

3 Comparison to prior proposals [vs]
3.1 Changes since R2 [vs.r2]

1 This section lists changes to the design of the merged modules proposal since P1103R2.

—(1.1) Addressed wording feedback from CWG and other parties.

—(1.2) Fixed bug where an incidentally-reachable definition could render other definitions of the same entity
ill-formed:

// a.h
#ifndef A_H
#define A_H
class X {};
#endif

// b.cc
#include "a.h"
export module B;
X x;

// c.cc
export module C;
import B; // not exported

// d.cc
import C;
#include "a.h" // OK even if definition of X is incidentally visible

// due to semantic boundaries rule

—(1.3) Fixed unintended divergence from Modules TS that permitted module linkage entities to have definitions
in multiple module units

3.2 Changes since R1 [vs.r1]
1 This section lists changes to the design of the merged modules proposal since P1103R1.

3.2.1 P1299R2: Module preamble is unnecessarily fragile [vs.r1.p1299r2]
1 Prior revisions of this proposal prohibited macros imported from header units from affecting the set of imports

of a module. However, the complexity of the resulting rule – for both users and implementations – was not
considered to be justified by the expected benefit for tools wishing to perform dependency extraction, so this
rule has been removed.

2 In this proposal, macros imported from a header unit become available immediately after the import as
described in 3.3.3, but unlike in R0, such macros can be expanded prior to later imports in the preamble of a
module unit.

3.2.2 P1242R1: Single-file modules [vs.r1.p1242r1]
1 As described in 3.4, this proposal removes the Modules TS “attendant entities” rule. This left a feature

vacuum: there was no longer a way to define a module entirely in a single file without module implementation
details being available outside the module.

§ 3.2.2 7

P1103R3

2 In this proposal, a complete module (with both interface and implementation) can be defined in a single
source file by separating the interface from the implementation with a

module :private;

marker.

3.3 Changes since R0 [vs.r0]
1 This section lists changes to the design of the merged modules proposal since P1103R0.

3.3.1 Namespace export [vs.r0.namespace]
1 In P1103R0 and in the Modules TS, all namespaces (excluding anonymous namespaces and those nested

within them) that are declared in a module interface unit have external linkage and are exported. Following
strong EWG direction in Rapperswil, in this document such namespace names are only exported if they
are either explicitly exported, or if any name within them is exported. [Note: The new approach permits
implementation-detail namespace names to be hidden from the interface of a module despite being declared
in a module interface unit. —end note] [Example:

export module M;

export namespace A {} // exported
namespace B { // exported

export int n;
}
namespace C { // not exported in this proposal, exported in TS / P1103R0

int n;
}

—end example]

3.3.2 Reachability in template instantiations [vs.r0.templates]
1 Following discussion and direction from Bellevue, we use a path of instantiation rule to guide visibility

and reachability of declarations within a template instantiation, based on the relevant rule from the Atom
proposal:

Within a template instantiation, the path of instantiation is a sequence of locations within the
program, starting from the ultimate point of instantiation, via each intervening template instantiation,
terminating at the instantiation in question. Names are visible and semantic properties are available
within template instantiations if they would be visible or available at any point along the path of
instantiation, or (for points outside the current translation unit) would be visible or available at the
end of the translation unit containing the relevant point of instantiation.

— P0947R1, 7.1 Templates and two-phase name lookup
This rule permits a template to make use of all declarations that were visible or reachable at each point along
its path of instantiation, even if those declarations are not visible or reachable in the template definition
context nor the template instantiation context.

2 [Example:
export module A;
export template<typename T, typename U> void f(T t, U u) {

t.f();
}

§ 3.3.2 8

P1103R3

module;
struct S { void f(); };
export module B;
import A;
export template<typename U> void g(U u) { S s; f(s, u); }

export module C;
import B;
export template<typename U> void h(const U &u) { g(u); }

import C;
int main() { h(0); }

The definition of struct S and the declaration of its member f are not reachable from the point of
instantiation of f<S, int>, nor from the template definition. But this code is valid under this proposal,
because S is reachable from module B, which is on the path of instantiation. —end example]

3 As described above (2.3.3), implementations are permitted to treat additional declarations as reachable even
if they would not be reachable on the path of instantiation, if they are transitively imported at the point of
instantiation. [Example:

module M;
struct S;
import C;
// unspecified whether a definition of S is reachable
// here or in the instantiation of h<S>
void q(const S &s) { h(s); }

—end example]
4 The same rule applies to the set of names found by ADL: names visible along the path of instantiation are

visible to ADL. Internal-linkage declarations within the global module are ignored. In addition, exported
declarations in the owning module of each associated type are visible to ADL.

3.3.3 Finding the end of the preamble [vs.r0.preamble]
1 In R0 of this proposal, the preprocessor was burdened with finding the end of the preamble, and making

macros from header units visible at that point. That was problematic both for implementers (as it is a
challenging rule to implement) and for users (as code would silently do something different from what was
expected, and imports in a preamble would behave differently from imports in non-modular code). This
proposal uses a simpler rule: imported macros become visible immediately after the import declaration.

3.4 Changes to the Modules TS [vs.ts]
1 This section lists the ways in which valid code under the Modules TS would become invalid or change meaning

in this merged proposal.
2 A module; introducer is required prior to a global module fragment, as described in P0713R1 and approved

by Evolution.
3 When an entity is owned by a module and is never exported, but is referenced by an exported part of the

module interface, the Modules TS would export the semantic properties associated with the entity at the
point of the export. If multiple such exports give the entity different semantics, the program is ill-formed:

export module M;
struct S;
export S f(); // S incomplete here
struct S {};
export S g(); // S complete here, error

§ 3.4 9

P1103R3

Under the Atom proposal, the semantics of such entities are instead determined their the properties at the
end of the module interface unit.
In this merged proposal, the semantics of all entities owned by a module are determined by their properties
at the end of the module interface unit (regardless of whether they are exported). [Note: The order in which
declarations appear within a module interface has no bearing on which semantic properties are exported in
this merged proposal. —end note]
The Modules TS “attendant entities” rule is removed, because there are no longer any cases where it could
apply.

4 Entities declared within extern "C" and extern "C++" within a module are no longer owned by that module.
It is unclear whether this is a change from the intent of the Modules TS.

5 Namespace names are exported less often in this proposal, as discussed above.

3.5 Changes relative to the Atom proposal [vs.atom]
1 This section lists the ways in which valid code under the Atom proposal would become invalid or change

meaning in this merged proposal.
2 The merged proposal supports global module fragments, which interferes with the Atom proposal’s goal of

making the preamble easy to identify and process with non-compiler tools. However, the benefits of the
Atom approach are still available to those who choose not to put code in the global module fragment.

3 The identifiers export and module are taken as keywords by the merged proposal, rather than making them
context-sensitive as proposed by the Atom proposal. This follows EWG’s direction on this question from
discussion of P0924R0.

§ 3.5 10

Part II

Wording for applying the merged modules
proposal to the C++20 working draft

11

P1103R3

5 Lexical conventions [lex]
5.1 Separate translation [lex.separate]
Modify paragraph 5.1/2 as follows

2 [Note: Previously translated translation units and instantiation units can be preserved individ-
ually or in libraries. The separate translation units of a program communicate (6.5) by (for
example) calls to functions whose identifiers have external or module linkage, manipulation of
objects whose identifiers have external or module linkage, or manipulation of data files. Transla-
tion units can be separately translated and then later linked to produce an executable program
(6.5). — end note]

5.2 Phases of translation [lex.phases]
Modify bullet 7 of paragraph 5.2/1 as follows:

7. White-space characters separating tokens are no longer significant. Each preprocessing to-
ken is converted into a token (5.6). The resulting tokens are syntactically and semantically
analyzed and translated as a translation unit. [Note: The process of analyzing and translat-
ing the tokens may occasionally result in one token being replaced by a sequence of other
tokens (17.2). — end note] It is implementation-defined whether the sources for module
units and header units on which the current translation unit has an interface dependency
(100.1, 100.3) are required to be available. [Note: Source files, translation units and
translated translation units need not necessarily be stored as files, nor need there be any
one-to-one correspondence between these entities and any external representation. The
description is conceptual only, and does not specify any particular implementation. — end
note]

5.4 Preprocessing tokens [lex.pptoken]
Modify bullet 3 of paragraph 5.4/3 as follows:

Otherwise, the next preprocessing token is the longest sequence of characters that could consti-
tute a preprocessing token, even if that would cause further lexical analysis to fail, except that
a header-name (5.8) is only formed

— within a #include directive (19.2),

— within a has-include-expression, or

— outside of any preprocessing directive, if applying phase 4 of translation to the sequence of
preprocessing tokens produced thus far is valid and results in an import-seq (14.4).

5.10 Identifiers [lex.name]
In 5.10, add these two identifiers to Table 4, “Identifiers with special meaning”:

module
import

5.11 Keywords [lex.key]
Modify note in paragraph 5.11/1 as follows:

1 ...

[Note: The export and register keywords are is unused but are is reserved for future use. — end
note]

§ 5.11 12

P1103R3

6 Basic concepts [basic]
6.1 Declarations and definitions [basic.def]
Modify paragraph 6.1/1 as follows:

1 A declaration (Clause 9) may introduce one or more names into a translation unit or redeclare
names introduced by previous declarations. If so, the declaration specifies the interpretation
and attributessemantic properties of these names. [...]

6.2 One-definition rule [basic.def.odr]
Change paragraph 6.2/1 as follows:

1 No translation unit shall contain more than one definition of any A variable, function, class
type, enumeration type, or template shall not be defined where a prior definition is necessarily
reachable (100.6); no diagnostic is required if the prior declaration is in another translation
unit.

Modify the end of paragraph 6.2/10 as follows
10 [...] An A definition of an inline function or variable shall be defined reachable in every transla-

tion unit in which it is odr-used outside of a discarded statement.

Modify paragraph 6.2/11 as follows
11 Exactly one A definition of a class is required to be reachable in a translation unit if in every

context in which the class is used in a way that requires the class type to be complete.

Modify opening of paragraph 6.2/12 as follows
12 There can be more than one definition of a class type (Clause 10), enumeration type (9.6), inline

function with external linkage (9.1.6), inline variable with external linkage (9.1.6), class tem-
plate (Clause 12), non-static function template (12.6.6), static data member of a class template
(12.6.1.3), member function of a class template (12.6.1.1), or template specialization for which
some template parameters are not specified (12.8, 12.6.5) in a program provided that each
definition appears in a different translation unit no prior definition is necessarily reachable
(100.6) at the point where a definition appears, and provided the definitions satisfy the follow-
ing requirements. There shall not be more than one definition of an entity that is attached to
a named module (100.1); no diagnostic is required unless a prior definition is reachable at a
point where a later definition appears. Given such an entity named D defined in more than one
translation unit, then

6.3 Scope [basic.scope]
6.3.6 Namespace scope [basic.scope.namespace]
Modify paragraph 6.3.6/1 as follows:

1 The declarative region of a namespace-definition is its namespace-body. Entities declared in a
namespace-body are said to be members of the namespace, and names introduced by these
declarations into the declarative region of the namespace are said to be member names of the
namespace. A namespace member name has namespace scope. Its potential scope includes its
namespace from the name’s point of declaration (6.3.2) onwards; and for each using-directive
(9.7.3) that nominates the member’s namespace, the member’s potential scope includes that
portion of the potential scope of the using-directive that follows the member’s point of declaration.
If a translation unit Q is imported into a translation unit R (100.3), the potential scope of a name
X declared with namespace scope in Q is extended to include the portion of the corresponding
namespace scope in R following the first module-import-declaration or module-declaration in R
that imports Q (directly or indirectly) if

§ 6.3.6 13

P1103R3

—(1.1) X does not have internal linkage, and

—(1.2) X is declared after the module-declaration in Q (if any), and

—(1.3) either X is exported or Q and R are part of the same module.

[Note: A module-import-declaration imports both the named translation unit(s) and any modules
named by exported module-import-declarations within them, recursively. [Example:

// Translation unit #1
export module Q;
export int sq(int i) { return i*i; }

// Translation unit #2
export module R;
export import Q;

// Translation unit #3
import R;
int main() { return sq(9); } // OK: sq from module Q

— end example] — end note]

6.4 Name lookup [basic.lookup]
Modify paragraph 6.4/1 as follows:

1 The name lookup rules apply uniformly to all names (including typedef-names (9.1.3), namespace-
names (9.7), and class-names (10.1)) wherever the grammar allows such names in the context
discussed by a particular rule. Name lookup associates the use of a name with a set of declara-
tions (6.1) of that name. [...] Only after name lookup, function overload resolution (if applicable)
and access checking have succeeded are the attributessemantic properties introduced by the
name’s declaration and its reachable (100.6) redeclarations used further in the expression pro-
cessing (Clause 7).

6.4.2 Argument-dependent name lookup [basic.lookup.argdep]
Modify paragraph 6.4.2/2 as follows:

2 For each argument type T in the function call, there is a set of zero or more associated name-
spaces and a set of zero or more associated classes entities (other than namespaces) to be
considered. The sets of namespaces and classes entities are determined entirely by the types
of the function arguments (and the namespace of any template template argument). Typedef
names and using-declarations used to specify the types do not contribute to this set. The sets
of namespaces and classes entities are determined in the following way:

—(2.1) If T is a fundamental type, its associated sets of namespaces and classes entities are both
empty.

—(2.2) If T is a class type (including unions), its associated classes entities are the class itself;
the class of which it is a member, if any; and its direct and indirect base classes. Its
associated namespaces are the innermost enclosing namespaces of its associated classes
entities. Furthermore, if T is a class template specialization, its associated namespaces
and classes entities also include: the namespace and classes entities associated with the
types of the template arguments provided for template type parameters (excluding template
template arguments); the templates used as template template arguments; the namespaces
of which any template template arguments are members; and the classes of which any
member template used as template template arguments are members. [Note: Non-type
template arguments do not contribute to the set of associated namespaces. — end note]

§ 6.4.2 14

P1103R3

—(2.3) If T is an enumeration type, its associated namespace is the innermost enclosing name-
space of its declaration, and its associated entities are T and, if. If it is a class member, its
associated class is the member’s class; else it has no associated class.

—(2.4) If T is a pointer to U or an array of U, its associated namespaces and classes entities are
those associated with U.

—(2.5) If T is a function type, its associated namespaces and classes entities are those associated
with the function parameter types and those associated with the return type.

—(2.6) If T is a pointer to a data member of class X, its associated namespaces and classes entities
are those associated with the member type together with those associated with X.

If an associated namespace is an inline namespace (9.7.1), its enclosing namespace is also in-
cluded in the set. If an associated namespace directly contains inline namespaces, those inline
namespaces are also included in the set. In addition, if the argument is the name or address
of a set of overloaded functions and/or function templates, its associated classes entities and
namespaces are the union of those associated with each of the members of the set, i.e., the
classes entities and namespaces associated with its parameter types and return type. Addition-
ally, if the aforementioned set of overloaded functions is named with a template-id, its associated
classes entities and namespaces also include those of its type template-arguments and its tem-
plate template-arguments.

Modify paragraph 6.4.2/4 and add /5 as follows:

4 When considering an associated namespace N, the lookup is the same as the lookup performed
when the associated namespace N is used as a qualifier (6.4.3.2) except that:

—(4.1) Any using-directives in the associated namespace N are ignored.

—(4.2) Any namespace-scope friend functions or friend function templates (10.7.3) declared in
associated classes with reachable definitions in the set of associated entities are visible
within their respective namespaces even if they are not visible during an ordinary lookup
(9.7.1.2).

—(4.3) All names except those of (possibly overloaded) functions and function templates are ig-
nored.

—(4.4) Any declaration D in N that is in the interface of a named module M (100.2) is visible if
there is an associated entity attached to M with the same innermost enclosing non-inline
namespace as D.

—(4.5) If the lookup is for a dependent name (12.7.2 [temp.dep], 12.7.4.2), any declaration D in
N is visible if D would be visible to qualified name lookup (6.4.3.2) at any point in the
instantiation context (100.5) of the lookup, unless D is declared in another translation unit,
attached to the global module, and is either discarded (100.4) or has internal linkage.

5 [Example:

// TU 1
export module M;
namespace R {

export struct X {};
export void f(X);

}
namespace S {

export void f(X, X);
}

// TU 2
export module N;
import M;
export R::X make();
namespace R { static int g(X); }

§ 6.4.2 15

P1103R3

template<typename T, typename U> void apply(T t, U u) {
f(t, u);
g(t);

}

// TU 3
module Q;
import N;
namespace S {

struct Z { template<typename T> operator T(); };
}
void test() {

auto x = make(); // OK, decltype(x) is R::X in module M
R::f(x); // ill-formed: R and R::f are not visible here
f(x); // OK, calls R::f from interface of M
f(x, S::Z()); // ill-formed: S::f in module M not considered

// even though S is an associated namespace
apply(x, S::Z()); // OK, S::f is visible in instantiation context, and

// R::g is visible even though it has internal linkage
}

— end example]

6.4.3 Qualified name lookup [basic.lookup.qual]
6.4.3.2 Namespace members [namespace.qual]
Change in paragraph 2:

2 For a namespace X and name m, the namespace-qualified lookup set S(X,m) is defined as follows:
Let S’(X,m) be the set of all declarations of m in X and the inline namespace set of X (9.7.1)
whose potential scope (6.3.6 [basic.scope.namespace]) would include the namespace in which
m is declared at the location of the nested-name-specifier. If S’(X,m) is not empty, S(X, m) is
S’(X, m); otherwise, S(X, m) is the union of S(Ni, m) for all namespaces Ni nominated by using-
directives in X and its inline namespace set.

6.5 Program and linkage [basic.link]
Change the definition of translation-unit in paragraph 6.5/1 to:

translation-unit:
top-level-declaration-seqopt
global-module-fragmentopt module-declaration top-level-declaration-seqopt private-module-fragmentopt

private-module-fragment:
module : private ; top-level-declaration-seqopt

top-level-declaration-seq:
top-level-declaration
top-level-declaration-seq top-level-declaration

top-level-declaration:
module-import-declaration
declaration

Add new paragraphs after the grammar:
1 A private-module-fragment shall appear only in a primary module interface unit (100.1). A

module unit with a private-module-fragment shall be the only module unit of its module; no
diagnostic is required.

2 A token sequence beginning with exportopt module or exportopt import and not immediately
followed by :: is never interpreted as the declaration of a top-level-declaration.

§ 6.5 16

P1103R3

Insert a new bullet between first and second bullet of paragraph 6.5/2:
—(2.1) When a name has module linkage, the entity it denotes can be referred to by names from

other scopes of the same module unit (100.1) or from scopes of other module units of that
same module.

Modify bullet (3.2) of paragraph 6.5/3 as follows:

—(2.2) a non-inline variable of non-volatile const-qualified type, unless

—(2.2.1) it is explicitly declared extern, or
—(2.2.2) it is inline or exported, or
—(2.2.3) it was previously declared and the prior declaration did not have internal linkage; or

that is neither explicitly declared extern nor previously declared to have external linkage;
or

Modify paragraph 6.5/4 as follows:
4 An unnamed namespace or a namespace declared directly or indirectly within an unnamed

namespace has internal linkage. All other namespaces have external linkage. A name having
namespace scope that has not been given internal linkage above has the same linkage as the
enclosing namespace if itand that is the name of

—(4.1) a variable; or

—(4.2) a function; or

—(4.3) a named class (Clause 10), or an unnamed class defined in a typedef declaration in which
the class has the typedef name for linkage purposes (9.1.3); or

—(4.4) a named enumeration (9.6), or an unnamed enumeration defined in a typedef declaration
in which the enumeration has the typedef name for linkage purposes (9.1.3); or

—(4.5) a template.

has its linkage determined as follows:

—(4.6) if the enclosing namespace has internal linkage, the name has internal linkage;

—(4.7) otherwise, if the declaration of the name is attached to a named module (100.1) and is not
exported (100.2), the name has module linkage;

—(4.8) otherwise, the name has external linkage.

Modify 6.5/6 as follows:

6 The name of a function declared in block scope and the name of a variable declared by a block
scope extern declaration have linkage. If such a declaration is attached to a named module,
the program is ill-formed. If there is a visible declaration of an entity with linkage having the
same name and type, ignoring entities declared outside the innermost enclosing namespace
scope, the block scope declaration declares that same entity and receives the linkage of the
previous declaration. If there is more than one such matching entity, the program is ill-formed.
Otherwise, if no matching entity is found, the block scope entity receives external linkage.

Modify paragraph 6.5/10 and add /11 as follows:

10 Two names that are the same (Clause 6) and that are declared in different scopes shall denote
the same variable, function, type, template or namespace if

—(10.1) both names have external or module linkage and are declared in declarations attached to
the same module, or else both names have internal linkage and are declared in the same
translation unit; and

—(10.2) both names refer to members of the same namespace or to members, not by inheritance,
of the same class; and

§ 6.5 17

P1103R3

—(10.3) when both names denote functions, the parameter-type-lists of the functions (9.2.3.5) are
identical; and

—(10.4) when both names denote function templates, the signatures (12.6.6.1) are the same.

If multiple declarations of the same name with external linkage would declare the same entity
except that they are attached to different modules, the program is ill-formed; no diagnostic is
required. [Note: using-declarations, typedef declarations, and alias-declarations do not declare
entities, but merely introduce synonyms. Similarly, using-directives do not declare entities.
— end note]

11 If a declaration would redeclare a reachable declaration attached to a different module, the
program is ill-formed. [Example:

// "decls.h"
int f(); // #1, attached to the global module
int g(); // #2, attached to the global module

// module interface of M
module;
#include "decls.h"
export module M;
export using ::f; // OK: does not declare an entity, exports #1
int g(); // error: matches #2, but attached to M
export int h(); // #3
export int k(); // #4

// other translation unit
import M;
static int h(); // error: matches #3
int k(); // error: matches #4

— end example] As a consequence of these rules, all declarations of an entity are attached to
the same module; the entity is said to be attached to that module.

6.8 Program execution [basic.exec]
6.8.3 Start and termination [basic.start]
6.8.3.1 main function [basic.start.main]
Modify paragraph 6.8.3.1/1 as follows:

1 A program shall contain a global function called main attached to the global module.

Modify paragraph 6.8.3.1/3 as follows:

3 ... A program that declares a variable main at global scope, or that declares a function main
at global scope attached to a named module, or that declares the name main with C language
linkage (in any namespace) is ill-formed.

§ 6.8.3.1 18

P1103R3

9 Declarations [dcl.dcl]
Add new alternatives to declaration in paragraph 9/1 as follows

declaration:
block-declaration
nodeclspec-function-declaration
function-definition
template-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition
empty-declaration
attribute-declaration
export-declaration

9.1 Specifiers [dcl.spec]
9.1.6 The inline specifier [dcl.inline]
Modify paragraph 9.1.6/6 as follows

6 An If an inline function or variable is odr-used in a shall be defined in every translation unit, a
definition of it shall be reachable from the end of that translation unit, in which it is odr-used
and it shall have exactly the same definition in every such translation unit case (6.5). [Note: A
call to the inline function or a use of the inline variable may be encountered before its definition
appears in the translation unit. — end note] If the a definition of a function or variable appears
in a translation unit before is reachable at the point of its first declaration as inline, the program
is ill-formed. If a function or variable with external or module linkage is declared inline in one
translation unit, there it shall be a reachable declared inline declaration in all translation units
in which it appearsis declared; no diagnostic is required. An inline function or variable with
external or module linkage shall have the same address in all translation units. [Note: A static
local variable in an inline function with external or module linkage always refers to the same
object. A type defined within the body of an inline function with external or module linkage is
the same type in every translation unit. — end note]

Add a new paragraph 9.1.6/7 as follows:

7 An exported inline function or variable shall be defined in the translation unit containing its
exported declaration, outside the private-module-fragment (if any). [Note: There is no restriction
on the linkage (or absence thereof) of entities that the function body of an exported inline
function can reference. A constexpr function (9.1.5) is implicitly inline. — end note]

9.1.7 Type specifiers [dcl.type]
9.1.7.4 The auto specifier [dcl.spec.auto]
Add a new paragraph before 9.1.7.4/9 (“If the name of an entity with an undeduced placeholder type appears
in an expression, the program is ill-formed.”) as follows:

9 An exported function with a declared return type that uses a placeholder type shall be defined
in the translation unit containing its exported declaration, outside the private-module-fragment
(if any). [Note: There is no restriction on the linkage of the deduced return type. — end note]

§ 9.1.7.4 19

P1103R3

9.7 Namespaces [basic.namespace]
Add a new paragraph after 9.7/1 as follows:

1 A namespace is an optionally-named declarative region. The name of a namespace can be used
to access entities declared in that namespace; that is, the members of the namespace. Unlike
other declarative regions, the definition of a namespace can be split over several parts of one or
more translation units.

2 [Note: A namespace name with external linkage is exported if any of its namespace-definitions
is exported, or if it contains any export-declarations (100.2). A namespace is never attached to a
module, and never has module linkage even if it is not exported. — end note] [Example:

export module M;
namespace N1 {} // N1 is not exported
export namespace N2 {} // N2 is exported
namespace N3 { export int n; } // N3 is exported

— end example]

§ 9.7 20

P1103R3

100 Modules [module]
Add a new clause between 9 and 10 titled “Modules” with contents as follows:

100.1 Module units and purviews [module.unit]
module-declaration:

exportopt module module-name module-partitionopt attribute-specifier-seqopt ;

module-name:
module-name-qualifieropt identifier

module-partition:
: module-name-qualifieropt identifier

module-name-qualifier:
identifier .
module-name-qualifier identifier .

1 A module unit is a translation unit that contains a module-declaration. A named module is the
collection of module units with the same module-name. The identifiers module and import shall
not appear as identifiers in a module-name or module-partition. The optional attribute-specifier-
seq appertains to the module-declaration.

2 A module interface unit is a module unit whose module-declaration contains the export keyword;
any other module unit is a module implementation unit. A named module shall contain exactly
one module interface unit with no module-partition, known as the primary module interface unit
of the module; no diagnostic is required.

3 A module partition is a module unit whose module-declaration contains a module-partition. A
named module shall not contain multiple module partitions with the same module-partition. All
module partitions of a module that are module interface units shall be directly or indirectly
exported by the primary module interface unit (100.3). No diagnostic is required for a violation
of these rules. [Note: Module partitions can be imported only by other module units in the same
module. The division of a module into module units is not visible outside the module. — end
note]

4 [Example:

// TU 1
export module A;
export import :Foo;
export int baz();

// TU 2
export module A:Foo;
import :Internals;
export int foo() { return 2 * (bar() + 1); }

// TU 3
module A:Internals;
int bar();

// TU 4
module A;
import :Internals;
int bar() { return baz() - 10; }
int baz() { return 30; }

§ 100.1 21

P1103R3

Module A contains four translation units:

—(4.1) a primary module interface unit,

—(4.2) a module partition A:Foo, which is a module interface unit forming part of the interface of
module A,

—(4.3) a module partition A:Internals, which does not contribute to the external interface of
module A, and

—(4.4) a module implementation unit providing a definition of bar and baz, which cannot be im-
ported because it does not have a partition name.

— end example]
5 A module unit purview is the sequence of tokens starting at the module-declaration and extending

to the end of the translation unit. The purview of a named module M is the set of module unit
purviews of M’s module units.

6 The global module is the collection of all global-module-fragments and all translation units that
are not module units. Declarations appearing in such a context are said to be in the purview of
the global module. [Note: The global module has no name, no module interface unit, and is not
introduced by any module-declaration. — end note]

7 A module is either a named module or the global module. A declaration is attached to a module
as follows:

—(7.1) If the declaration

—(7.1.1) is a replaceable global allocation or deallocation function (21.6.2.1 [new.delete.single],
21.6.2.2 [new.delete.array]), or

—(7.1.2) is a namespace-declaration with external linkage, or
—(7.1.3) appears within a linkage-specification,

it is attached to the global module.

—(7.2) Otherwise, the declaration is attached to the module in whose purview it appears.

8 A module-declaration that contains neither export nor a module-partition implicitly imports the
primary module interface unit of the module as if by a module-import-declaration. [Example:

// TU 1
module B:Y; // does not implicitly import B
int y();

// TU 2
export module B;
import :Y; // OK, does not create interface dependency cycle
int n = y();

// TU 3
module B:X1; // does not implicitly import B
int &a = n; // error: n not visible here

// TU 4
module B:X2; // does not implicitly import B
import B;
int &b = n; // OK

// TU 5
module B; // implicitly imports B
int &c = n; // OK

— end example]

§ 100.1 22

P1103R3

100.2 Export declaration [module.interface]
export-declaration:

export declaration
export { declaration-seqopt }

1 An export-declaration shall appear only at namespace scope and only in the purview of a module
interface unit. An export-declaration shall not appear directly or indirectly within an unnamed
namespace or a private-module-fragment. An export-declaration has the declarative effects of its
declaration or its declaration-seq (if any). An export-declaration does not establish a scope and
its declaration or declaration-seq shall not contain an export-declaration.

2 A declaration is exported if it is

—(2.1) a namespace-scope declaration declared within an export-declaration, or
—(2.2) a module-import-declaration declared with the export keyword (100.3), or
—(2.3) a namespace-definition that contains an exported declaration, or
—(2.4) a declaration within a header unit (100.3) that introduces at least one name.

The interface of a module M is the set of all exported declarations within its purview. [Example:

export module M;
namespace A { // exported

export int f(); // exported
int g(); // not exported

}

The interface of M comprises A and A::f. — end example]
3 An exported declaration shall declare at least one name. If the declaration is not within a header

unit, it shall not declare a name with internal linkage.
4 [Example:

// "a.h"
export int x;

// TU 1
module;
#include "a.h" // error: declaration of x is not in the

// purview of a module interface unit
export module M;
export namespace {} // error: does not introduce any names
export namespace {

int a1; // error: export of name with internal linkage
}
namespace {

export int a2; // error: export of name with internal linkage
}
export static int b; // error: b explicitly declared static
export int f(); // OK
export namespace N { } // OK
export using namespace N; // error: does not declare a name

— end example]
5 If the declaration is a using-declaration (9.8 [namespace.udecl]) and is not within a header unit,

all entities to which all of the using-declarators ultimately refer (if any) shall have been intro-
duced with a name having external linkage. [Example:

§ 100.2 23

P1103R3

// "b.h"
int f();

// "c.h"
int g();

// TU 1
export module X;
export int h();

// TU 2
module;
#include "b.h"
export module M;
import "c.h";
import X;
export using ::f, ::g, ::h; // OK
struct S;
export using ::S; // error: S has module linkage
namespace N {

export int h();
static int h(int); // #1

}
export using N::h; // error: #1 has internal linkage

— end example] [Note: Names introduced by typedef declarations and alias-declarations are
not so constrained. [Example:

export module M;
struct S;
export using T = S; // OK: exports name T denoting type S

— end example] — end note]
6 A redeclaration of an exported declaration of an entity is implicitly exported. An exported redec-

laration of a non-exported declaration of an entity is ill-formed. [Example:

export module M;
struct S { int n; };
typedef S S;
export typedef S S; // OK, does not redeclare an entity
export struct S; // error: exported declaration follows non-exported declaration

— end example]
7 A name is exported by a module if it is introduced or redeclared by an exported declaration in

the purview of that module. [Note: Exported names have either external linkage or no linkage;
see 6.5. Namespace-scope names exported by a module are visible to name lookup in any
translation unit importing that module; see 6.3.6. Class and enumeration member names are
visible to name lookup in any context in which a definition of the type is reachable. — end note]
[Example:

// Interface unit of M
export module M;
export struct X {

static void f();
struct Y { };

§ 100.2 24

P1103R3

};

namespace {
struct S { };

}
export void f(S); // OK
struct T { };
export T id(T); // OK

export struct A; // A exported as incomplete

export auto rootFinder(double a) {
return [=](double x) { return (x + a/x)/2; };

}

export const int n = 5; // OK: n has external linkage

// Implementation unit of M
module M;
struct A {

int value;
};

// main program
import M;
int main() {

X::f(); // OK: X is exported and definition of X is reachable
X::Y y; // OK: X::Y is exported as a complete type
auto f = rootFinder(2); // OK
return A{45}.value; // error: A is incomplete

}

— end example]
8 [Note: Redeclaring a name in an export-declaration cannot change the linkage of the name (6.5).

[Example:

// Interface unit of M
export module M;
static int f(); // #1
export int f(); // error: #1 gives internal linkage
struct S; // #2
export struct S; // error: #2 gives module linkage
namespace {

namespace N {
extern int x; // #3

}
}
export int N::x; // error: #3 gives internal linkage

— end example] — end note]
9 [Note: Declarations in an exported namespace-definition or in an exported linkage-specification

(10.5) are exported and subject to the rules of exported declarations. [Example:

export module M;

§ 100.2 25

P1103R3

export namespace N {
int x; // OK
static_assert(1 == 1); // error: does not declare a name

}

— end example] — end note]

100.3 Import declaration [module.import]
module-import-declaration:

exportopt import module-name attribute-specifier-seqopt ;
exportopt import module-partition attribute-specifier-seqopt ;
exportopt import header-name attribute-specifier-seqopt ;

1 In a module unit, all module-import-declarations shall precede all other top-level-declarations in
the top-level-declaration-seq of the translation-unit and of the private-module-fragment (if any).
The optional attribute-specifier-seq appertains to the module-import-declaration.

2 A module-import-declaration imports a set of translation units determined as described below.
[Note: Namespace-scope names exported by the imported translation units become visible
(6.3.6) in the importing translation unit and declarations within the imported translation units
become reachable (100.6) in the importing translation unit after the import declaration. — end
note]

3 A module-import-declaration that specifies a module-name M imports all module interface units
of M .

4 A module-import-declaration that specifies a module-partition shall only appear after the module-
declaration in a module unit of some module M . Such a declaration imports the so-named
module partition of M .

5 A module-import-declaration that specifies a header-name H imports a synthesized header unit,
which is a translation unit formed by applying phases 1 to 7 of translation (5.2 [lex.phases]) to
the source file or header nominated by H, which shall not contain a module-declaration. [Note:
All declarations within a header unit are implicitly exported (100.2), and are attached to the
global module (100.1). — end note] An importable header is a member of an implementation-
defined set of headers. H shall identify an importable header. Two module-import-declarations
import the same header unit if and only if their header-names identify the same header or source
file (14.2). [Note: A module-import-declaration nominating a header-name is also recognized by
the preprocessor, and results in macros defined at the end of phase 4 of translation of the
header unit being made visible as described in 14.4. — end note] A declaration of a name
with internal linkage is permitted within a header unit despite all declarations being implicitly
exported (100.2). If such a declaration declares an entity that is odr-used outside the header
unit, or by a template instantiation whose point of instantiation is outside the header unit, the
program is ill-formed.

6 When a module-import-declaration imports a translation unit T , it also imports all translation
units imported by exported module-import-declarations in T ; such translation units are said to
be exported by T . When a module-import-declaration in a module unit imports another module
unit of the same module, it also imports all translation units imported by all module-import-
declarations in that module unit. These rules may in turn lead to the importation of yet more
translation units.

7 A module implementation unit shall not be exported. [Example:

// Translation unit #1
module M:Part;

// Translation unit #2
export module M;
export import :Part; // error: exported partition :Part is an implementation unit

§ 100.3 26

P1103R3

— end example]
8 A module implementation unit of a module M that is not a module partition shall not contain a

module-import-declaration nominating M. [Example:

module M;
import M; // error: cannot import M in its own unit

— end example]
9 A translation unit has an interface dependency on a module unit U if it contains a module-

declaration or module-import-declaration that imports U or if it has an interface dependency on
a module unit that has an interface dependency on U. A translation unit shall not have an
interface dependency on itself. [Example:

// Interface unit of M1
export module M1;
import M2;

// Interface unit of M2
export module M2;
import M3;

// Interface unit of M3
export module M3;
import M1; // error: cyclic interface dependency M3 -> M1 -> M2 -> M3

— end example]

100.4 Global module fragment [module.global]
global-module-fragment:

module ; top-level-declaration-seqopt

1 A global-module-fragment specifies the contents of the global module fragment for a module
unit. The global module fragment can be used to provide declarations that are attached to the
global module and usable within the module unit. [Note: Prior to phase 4 of translation, only
preprocessing directives can appear in the global module fragment (14.3). — end note]

2 A declaration D is decl-reachable from a declaration S in the same translation unit if:

—(2.1) D does not declare a function or function template and S contains an id-expression, namespace-
name, type-name, template-name, or concept-name naming D, or

—(2.2) D declares a function or function template that is named by an expression (6.2 [basic.def.odr])
appearing in S, or

—(2.3) S contains an expression E of the form
postfix-expression (expression-listopt)

whose postfix-expression denotes a dependent name, or for an operator expression whose
operator denotes a dependent name, and D is found by name lookup for the corresponding
name in an expression synthesized from E by replacing each type-dependent argument or
operand with a value of a placeholder type with no associated namespaces or entities, or

—(2.4) S contains an expression that takes the address of an overloaded function (11.4 [over.over])
whose set of overloads contains D and for which the target type is dependent, or

—(2.5) there exists a declaration M that is not a namespace-definition for which M is decl-reachable
from S and either

—(2.5.1) D is decl-reachable from M , or
—(2.5.2) D redeclares the entity declared by M or M redeclares the entity declared by D, and D

is neither a friend declaration nor a block-scope declaration, or

§ 100.4 27

P1103R3

—(2.5.3) D declares a namespace N and M is a member of N , or
—(2.5.4) one of M and D declares a class or class template C and the other declares a member

or friend of C, or
—(2.5.5) one of D and M declares an enumeration E and the other declares an enumerator of

E, or
—(2.5.6) D declares a function or variable and M is declared in D,3 or
—(2.5.7) one of M and D declares a template and the other declares a partial or explicit special-

ization or an implicit or explicit instantiation of that template, or
—(2.5.8) one of M and D declares a class or enumeration type and the other introduces a

typedef name for linkage purposes for that type.

In this determination, it is unspecified

—(2.6) whether a reference to an alias-declaration, typedef declaration, using-declaration, or namespace-
alias-declaration is replaced by the declarations they name prior to this determination,

—(2.7) whether a simple-template-id that does not denote a dependent type and whose template-
name names an alias template is replaced by its denoted type prior to this determination,

—(2.8) whether a decltype-specifier that does not denote a dependent type is replaced by its de-
noted type prior to this determination, and

—(2.9) whether a non-value-dependent constant expression is replaced by the result of constant
evaluation prior to this determination.

3 A declaration D in a global module fragment of a module unit is discarded if D is not decl-
reachable from any top-level-declaration in the top-level-declaration-seq of the translation unit.
[Note: A discarded declaration is neither reachable nor visible to name lookup outside the
module unit, nor in template instantiations whose points of instantiation (12.7.4.1 [temp.point])
are outside the module unit, even when the instantiation context (100.5) includes the module
unit. — end note]

4 [Example:

const int size = 2;
int ary1[size]; // unspecified whether size is decl-reachable from ary1
constexpr int identity(int x) { return x; }
int ary2[identity(2)]; // unspecified whether identity is decl-reachable from ary2

template<typename> struct S;
template<typename, int> struct S2;
constexpr int g(int);

template<typename T, int N>
S<S2<T, g(N)>> f(); // S, S2, g, and :: are decl-reachable from f

template<int N>
void h() noexcept(g(N) == N); // g and :: are decl-reachable from h

— end example]
5 [Example:

// "foo.h"
namespace N {

struct X {};
int d();
int e();
inline int f(X, int = d()) { return e(); }
int g(X);

3) A declaration can appear within a lambda-expression in the initializer of a variable.

§ 100.4 28

P1103R3

int h(X);
}

// module M interface
module;
#include "foo.h"
export module M;
template<typename T> int use_f() {

N::X x; // N::X, N, and :: are decl-reachable from use_f
return f(x, 123); // N::f is decl-reachable from use_f

// N::e is indirectly decl-reachable from use_f
// because it is decl-reachable from N::f
// N::d is decl-reachable from use_f
// because it is decl-reachable from N::f
// even though it is not used in this call

}
template<typename T> int use_g() {

N::X x; // N::X, N, and :: are decl-reachable from use_f
return g((T(), x)); // N::g is not decl-reachable from use_g

}
template<typename T> int use_h() {

N::X x; // N::X, N, and :: are decl-reachable from use_h
return h((T(), x)); // N::h is not decl-reachable from use_h, but

// N::h is decl-reachable from use_h<int>
}
int k = use_h<int>();

// use_h<int> is decl-reachable from k, so
// N::h is decl-reachable from k

// module M implementation
module M;
int a = use_f<int>(); // OK
int b = use_g<int>(); // error: no viable function for call to g;

// g is not decl-reachable from purview of
// module M’s interface, so is discarded

int c = use_h<int>(); // OK

— end example]

100.5 Instantiation context [module.context]
1 The instantiation context is a set of points within the program that determines which names

are visible to argument-dependent name lookup (6.4.2) and which declarations are reachable
(100.6) in the context of a particular declaration or template instantiation.

2 During the implicit definition of a defaulted special member function (10.2.3 [special]), the in-
stantiation context is the union of the instantiation context from the definition of the class and
the instantiation context of the program construct that resulted in the implicit definition of the
special member function.

3 During the implicit instantiation of a template whose point of instantiation is specified as that of
an enclosing specialization (12.7.4.1 [temp.point]), the instantiation context is the union of the
instantiation context of the enclosing specialization and, if the template is defined in a module
interface unit of a module M and the point of instantiation is not in a module interface unit of
M , the point at the end of the top-level-declaration-seq of the primary module interface unit of
M (prior to the private-module-fragment, if any).

4 During the implicit instantiation of a template that is implicitly instantiated because it is refer-
enced from within the implicit definition of a defaulted special member function, the instantia-
tion context is the instantiation context of the defaulted special member function.

§ 100.5 29

P1103R3

5 During the instantiation of any other template specialization, the instantiation context com-
prises the point of instantiation of the template.

6 In any other case, the instantiation context at a point within the program comprises that point.
7 [Example:

// translation unit #1
export module stuff;
export template<typename T, typename U> void foo(T, U u) { auto v = u; }
export template<typename T, typename U> void bar(T, U u) { auto v = *u; }

// translation unit #2
export module M1;
import "defn.h"; // provides struct X {};
import stuff;
export template<typename T> void f(T t) {

X x;
foo(t, x);

}

// translation unit #3
export module M2;
import "decl.h"; // provides struct X; (not a definition)
import stuff;
export template<typename T> void g(T t) {

X *x;
bar(t, x);

}

// translation unit #4
import M1;
import M2;
void test() {

f(0);
g(0);

}

The call to f(0) is valid; the instantiation context of foo<int, X> comprises

—(7.1) the point at the end of translation unit #1,

—(7.2) the point at the end of translation unit #2, and

—(7.3) the point of the call to f(0),

so the definition of X is reachable (100.6).

It is unspecified whether the call to g(0) is valid: the instantiation context of bar<int, X> com-
prises

—(7.4) the point at the end of translation unit #1,

—(7.5) the point at the end of translation unit #3, and

—(7.6) the point of the call to g(0),

so the definition of X is not necessarily reachable, as described in 100.6. — end example]

§ 100.5 30

P1103R3

100.6 Reachability [module.reach]
1 A translation unit U is necessarily reachable from a point P if U is a module interface unit

on which the translation unit containing P has an interface dependency, or the translation
unit containing P imports U , in either case prior to P (100.3). [Note: While module interface
units are reachable even when they are only transitively imported via a non-exported import
declaration, namespace-scope names from such module interface units are not visible to name
lookup (6.3.6). — end note]

2 All translation units that are necessarily reachable are reachable. It is unspecified whether addi-
tional translation units on which the point within the program has an interface dependency are
considered reachable, and under what circumstances.4 [Note: It is advisable to avoid depend-
ing on the reachability of any additional translation units in programs intending to be portable.
— end note]

3 A declaration D is reachable or necessarily reachable, respectively, if, for any point P in the
instantiation context (100.5),

—(3.1) D appears prior to P in the same translation unit, or

—(3.2) D is not discarded (100.4), appears in a translation unit that is reachable or necessar-
ily reachable from P , respectively, and either does not appear within a private-module-
fragment or appears in a private-module-fragment of the module containing P .

[Note: Whether a declaration is exported has no bearing on whether it is reachable. — end note]
4 The accumulated properties of all reachable declarations of an entity within a context deter-

mine the behavior of the entity within that context. [Note: These reachable semantic prop-
erties include type completeness, type definitions, initializers, default arguments of functions
or template declarations, attributes, visibility of class or enumeration member names to ordi-
nary lookup, etc. Since default arguments are evaluated in the context of the call expression,
the reachable semantic properties of the corresponding parameter types apply in that context.
[Example:

// translation unit #1
export module M:A;
export struct B;

// translation unit #2
module M:B;
struct B {

operator int();
};

// translation unit #3
module M:C;
import :A;
B b1; // error: no reachable definition of struct B

// translation unit #4
export module M;
export import :A;
import :B;
B b2;
export void f(B b = B());

// translation unit #5
module X;
import M;

4) Implementations are therefore not required to prevent the semantic effects of additional translation units involved in the
compilation from being observed.

§ 100.6 31

P1103R3

B b3; // error: no reachable definition of struct B
void g() { f(); } // error: no reachable definition of struct B

— end example] — end note]
5 [Note: An entity can have reachable declarations even if it is not visible to name lookup. — end

note] [Example:

export module A;
struct X {};
export using Y = X;

module B;
import A;
Y y; // OK, definition of X is reachable
X x; // ill-formed: X not visible to unqualified lookup

— end example]

§ 100.6 32

P1103R3

10 Classes [class]
10.2 Class members [class.mem]
10.2.10 Bit-fields [class.bit]
Modify paragraph 10.2.10/1 as follows:

1 [...] The bit-field attributesemantic property is not part of the type of the class member. [...]

§ 10.2.10 33

P1103R3

11 Overloading [over]
11.5 Overloaded operators [over.oper]
11.5.8 User-defined literals [over.literal]
Modify paragraph 11.5.8/7 as follows:

7 [Note: Literal operators and literal operator templates are usually invoked implicitly through
user-defined literals (5.13.8). However, except for the constraints described above, they are
ordinary namespace-scope functions and function templates. In particular, they are looked up
like ordinary functions and function templates and they follow the same overload resolution
rules. Also, they can be declared inline or constexpr, they can have internal, module, or
external linkage, they can be called explicitly, their addresses can be taken, etc. — end note]

§ 11.5.8 34

P1103R3

12 Templates [temp]
Modify paragraph 12/4 as follows:

4 A template-declaration can appear only as a namespace scope or class scope declaration. Its
declaration shall not be an export-declaration. In a function template declaration, the last com-
ponent of the declarator-id shall not be a template-id. [...]

12.7 Name resolution [temp.res]
12.7.4 Dependent name resolution [temp.dep.res]
12.7.4.1 Point of instantiation [temp.point]
Delete paragraph 12.7.4.1/7:

7 The instantiation context of an expression that depends on the template arguments is the set
of declarations with external linkage declared prior to the point of instantiation of the template
specialization in the same translation unit.

Change in paragraph 12.7.4.1/8:

8 in addition to the points of instantiation described above,

—(8.1) for any such specialization that has a point of instantiation within the top-level-declaration-seq
of the translation unit, prior to the private-module-fragment (if any), the point after the
top-level-declaration-seq of the translation-unit is also considered a point of instantiation,
and

—(8.2) for any such specialization that has a point of instantiation within the private-module-fragment,
the end of the translation unit is also considered a point of instantiation.

12.7.4.2 Candidate functions [temp.dep.candidate]
Modify paragraph 12.7.4.2/1 as follows

1 For a function call where the postfix-expression is a dependent name, the candidate func-
tions are found using the usual lookup rules from the template definition context (6.4.1 [ba-
sic.lookup.unqual], 6.4.2). except that: [Note:

—(1.1) For the part of the lookup using unqualified name lookup (6.4.1 [basic.lookup.unqual]),
only function declarations from the template definition context are found.

—(1.2) For the part of the lookup using associated namespaces (6.4.2), only function declarations
found in either the template definition context or the template instantiation context are
found by this lookup, as described in 6.4.2.

— end note] If the call would be ill-formed or would find a better match had the lookup within
the associated namespaces considered all the function declarations with external linkage in-
troduced in those namespaces in all translation units, not just considering those declarations
found in the template definition and template instantiation contexts, then the program has
undefined behavior.

Append new paragraphs as follows:
2 [Example:

§ 12.7.4.2 35

P1103R3

// header file "X.h"
namespace Q {

struct X { };
}

// header file "G.h"
namespace Q {

void g_impl(X, X);
}

// interface unit of M1
module;
#include "X.h"
#include "G.h"
export module M1;
export template<typename T>
void g(T t) {

g_impl(t, Q::X{ }); // ADL in definition context finds Q::g_impl, g_impl not discarded
}

// interface unit of M2
module;
#include "X.h"
export module M2;
import M1;
void h(Q::X x) {

g(x); // OK
}

— end example]
3 [Example:

// interface unit of Std
export module Std;
export template<typename Iter>
void indirect_swap(Iter lhs, Iter rhs)
{

swap(*lhs, *rhs); // swap not found by unqualified lookup, can be found only via ADL
}

// interface unit of M
export module M;
import Std;

struct S { /∗ ...∗/ };
void swap(S&, S&); // #1

void f(S* p, S* q)
{

indirect_swap(p, q); // finds #1 via ADL in instantiation context
}

— end example]
4 [Example:

// header file "X.h"

§ 12.7.4.2 36

P1103R3

struct X { /∗ ... ∗/ };
X operator+(X, X);

// module interface unit of F
export module F;
export template<typename T>
void f(T t) {

t + t;
}

// module interface unit of M
module;
#include "X.h"
export module M;
import F;
void g(X x) {

f(x); // OK: instantiates f from F,
// operator+ is visible in instantiation context

}

— end example]
5 [Example:

// module interface unit of A
export module A;
export template<typename T>
void f(T t) {

cat(t, t); // #1
dog(t, t); // #2

}

// module interface unit of B
export module B;
import A;
export template<typename T, typename U>
void g(T t, U u) {

f(t);
}

// "foo.h", not an importable header
struct foo {

friend int cat(foo, foo);
};
int dog(foo, foo);

// module interface unit of C1
module;
#include "foo.h" // dog not referenced, discarded
export module C1;
import B;
export template<typename T>
void h(T t) {

g(foo{ }, t);
}

// translation unit

§ 12.7.4.2 37

P1103R3

import C1;
void i() {

h(0); // error: dog not found at #2
}

// "bar.h", an importable header
struct bar {

friend int cat(bar, bar);
};
int dog(bar, bar);

// module interface unit of C2
module;
#include "bar.h" // imports header unit "bar.h"
export module C2;
import B;
export template<typename T>
void j(T t) {

g(bar{ }, t);
}

// translation unit
import C2;
void k() {

j(0); // OK, dog found in instantiation context:
// visible at end of module interface unit of C2

}

— end example]

§ 12.7.4.2 38

P1103R3

14 Preprocessing directives [cpp]
Modify paragraph 14/5 as follows:

5 The implementation can process and skip sections of source files conditionally, include other
source files, import macros from header units, and replace macros. These capabilities are called
preprocessing, because conceptually they occur before translation of the resulting translation
unit.

14.1 Conditional inclusion [cpp.cont]
Modify the grammar before 14.1/1 as follows:

header-name-tokens:
string-literal
< h-pp-tokens >

has-include-expression:
__has_include (< h-char-sequence >)
__has_include (" q-char-sequence ")
__has_include (header-name)
__has_include (string-literal)
__has_include (< h-pp-tokens >)
__has_include (header-name-tokens)

Modify paragraph 14.1/2 as follows:
2 A defined-macro-expression evaluates to 1 if the identifier is currently defined as a macro name

(that is, if it is predefined or if it has one or more active macro definitions (14.4), for example
because it has been the subject of a #define preprocessing directive without an intervening
#undef directive with the same subject identifier), 0 if it is not.

Modify paragraph 14.1/3 as follows:
3 The third and fourth forms second form of has-include-expression are is considered only if

neither of the first or second forms matches form does not match, in which case the prepro-
cessing tokens are processed just as in normal text.

14.2 Source file inclusion [cpp.include]
Add a new paragraph after 14.2/6 as follows:

7 If the header identified by the header-name denotes an importable header (100.3), the prepro-
cessing directive is instead replaced by the preprocessing-tokens

import header-name ;

Add a new subclause 14.3 titled “Global module fragment” as follows:

14.3 Global module fragment [cpp.glob.frag]
pp-global-module-fragment:

module ; pp-balanced-token-seq module

1 If the first two preprocessing tokens at the start of phase 4 of translation are module ;, the result
of preprocessing shall begin with a pp-global-module-fragment for which all preprocessing-tokens
in the pp-balanced-token-seq were produced directly or indirectly by source file inclusion (14.2),
and for which the second module preprocessing-token was not produced by source file inclusion
or macro replacement (14.3 [cpp.replace]). Otherwise, the first two preprocessing tokens at the
end of phase 4 of translation shall not be module ;.

§ 14.3 39

P1103R3

Add a new subclause 14.4 titled “Header units” as follows:

14.4 Header units [cpp.module]
import-seq:

top-level-token-seqopt exportopt import

top-level-token-seq:
any pp-balanced-token-seq ending in ; or }

pp-import:
import header-name pp-import-suffixopt ;
import header-name-tokens pp-import-suffixopt ;

pp-import-suffix:
pp-import-suffix-token
pp-import-suffix pp-import-suffix-token

pp-import-suffix-token:
any pp-balanced-token other than ;

pp-balanced-token-seq:
pp-balanced-token
pp-balanced-token-seq pp-balanced-token

pp-balanced-token:
pp-ldelim pp-balanced-token-seqopt pp-rdelim
any preprocessing-token other than a pp-ldelim or pp-rdelim

pp-ldelim: one of
([{ <: <%

pp-rdelim: one of
)] } :> %>

1 A sequence of preprocessing-tokens matching the form of a pp-import instructs the preprocessor
to import macros from the header unit (100.3) denoted by the header-name. A pp-import is only
recognized when the sequence of tokens produced by phase 4 of translation up to the import
token forms an import-seq, and the import token is not within the header-name-tokens or pp-
import-suffix of another pp-import. The ; preprocessing-token terminating a pp-import shall not
have been produced by macro replacement (14.3 [cpp.replace]). The point of macro import for a
pp-import is immediately after the ; terminating the pp-import.

2 In the second form of pp-import, a header-name token is formed as if the header-name-tokens
were the pp-tokens of a #include directive. The header-name-tokens are replaced by the header-
name token. [Note: This ensures that imports are treated consistently by the preprocessor and
later phases of translation. — end note]

3 Each #define directive encountered when preprocessing each translation unit in a program
results in a distinct macro definition. Importing macros from a header unit makes macro defi-
nitions from a translation unit visible in other translation units. Each macro definition has at
most one point of definition in each translation unit and at most one point of undefinition, as
follows:

—(3.1) The point of definition of a macro definition within a translation unit is the point at which
its #define directive occurs (in the translation unit containing the #define directive), or, if
the macro name is not lexically identical to a keyword (5.11 [lex.key]) or to the identifiers
module or import, the first point of macro import of a translation unit containing a point of
definition for the macro definition, if any (in any other translation unit).

—(3.2) The point of undefinition of a macro definition within a translation unit is the first point at
which a #undef directive naming the macro occurs after its point of definition, or the first
point of macro import of a translation unit containing a point of undefinition for the macro
definition, whichever (if any) occurs first.

§ 14.4 40

P1103R3

4 A macro directive is active at a source location if it has a point of definition in that translation
unit preceding the location, and does not have a point of undefinition in that translation unit
preceding the location.

5 If a macro would be replaced or redefined, and multiple macro definitions are active for that
macro name, the active macro definitions shall all be valid redefinitions of the same macro (14.3
[cpp.replace]). [Note: The relative order of pp-imports has no bearing on whether a particular
macro definition is active. — end note]

6 [Example:

// translation unit a.h
#define X 123 // #1
#define Y 45 // #2
#define Z a // #3
#undef X // point of undefinition of #1 in a.h

// translation unit b.h
import "a.h"; // point of definition of #1, #2, and #3, point of undefinition of #1 in b.h
#define X 456 // OK, #1 is not active
#define Y 6 // error: #2 is active

// translation unit c.h
#define Y 45 // #4
#define Z c // #5

// translation unit d.h
import "a.h"; // point of definition of #1, #2, and #3, point of undefinition of #1 in d.h
import "c.h"; // point of definition of #4 and #5 in d.h
int a = Y; // OK, active macro definitions #2 and #3 are valid redefinitions
int c = Z; // error: active macro definitions #2 and #3 are not valid redefinitions of Z

— end example]

§ 14.4 41

P1103R3

Annex C Compatibility [diff]
C.5 C++ and ISO C++ 2017 [diff.cpp17]
C.5.1 Clause 5: lexical conventions [diff.cpp17.lex]
Add new entry as follows:

Affected subclauses: 5.8
Change: header-name tokens are formed in more contexts.
Rationale: Required for new features.
Effect on original feature: When the identifier import is followed by a < character, a header-
name token may be formed. [Example:

template<typename> class import {};
import<int> f(); // ill-formed; previously well-formed
::import<int> g(); // OK

— end example]

C.5.3 Clause 9: declarations [diff.cpp17.dcl]
Add new entry as follows:

Affected subclauses: 9.11.1, 9.11.3
Change: New identifiers with special meaning.
Rationale: Required for new features.
Effect on original feature: Top-level declarations beginning with module or import may either
be ill-formed or interpreted differently in this International Standard. [Example:

class module;
module *m1; // ill-formed; previously well-formed
::module *m2; // OK

class import {};
import j1; // was variable declaration; now import-declaration
::import j2; // variable declaration

— end example]

§ C.5.3 42

	I Commentary
	1 Background
	1.1 Introduction
	1.2 Acknowledgements

	2 Summary of merged proposal
	2.1 Basics
	2.2 Module partitions
	2.3 Support for non-modular code
	2.3.1 Global module fragment
	2.3.2 Header units
	2.3.3 Reachability of nonmodular declarations
	2.3.4 Module use from non-modular code

	3 Comparison to prior proposals
	3.1 Changes since R2
	3.2 Changes since R1
	3.2.1 P1299R2: Module preamble is unnecessarily fragile
	3.2.2 P1242R1: Single-file modules

	3.3 Changes since R0
	3.3.1 Namespace export
	3.3.2 Reachability in template instantiations
	3.3.3 Finding the end of the preamble

	3.4 Changes to the Modules TS
	3.5 Changes relative to the Atom proposal

	II Wording
	5 Lexical conventions
	5.1 Separate translation
	5.2 Phases of translation
	5.4 Preprocessing tokens
	5.10 Identifiers
	5.11 Keywords

	6 Basic concepts
	6.1 Declarations and definitions
	6.2 One-definition rule
	6.3 Scope
	6.3.6 Namespace scope

	6.4 Name lookup
	6.4.2 Argument-dependent name lookup
	6.4.3 Qualified name lookup
	6.4.3.2 Namespace members

	6.5 Program and linkage
	6.8 Program execution
	6.8.3 Start and termination
	6.8.3.1 main function

	9 Declarations
	9.1 Specifiers
	9.1.6 The inline specifier
	9.1.7 Type specifiers
	9.1.7.4 The auto specifier

	9.7 Namespaces

	100 Modules
	100.1 Module units and purviews
	100.2 Export declaration
	100.3 Import declaration
	100.4 Global module fragment
	100.5 Instantiation context
	100.6 Reachability

	10 Classes
	10.2 Class members
	10.2.10 Bit-fields

	11 Overloading
	11.5 Overloaded operators
	11.5.8 User-defined literals

	12 Templates
	12.7 Name resolution
	12.7.4 Dependent name resolution
	12.7.4.1 Point of instantiation
	12.7.4.2 Candidate functions

	14 Preprocessing directives
	14.1 Conditional inclusion
	14.2 Source file inclusion
	14.3 Global module fragment
	14.4 Header units

	C Compatibility
	C.5 C++ and ISO C++ 2017
	C.5.1 Clause 5: lexical conventions
	C.5.3 Clause 9: declarations

