
P1083r3 | Move resource_adaptor from Library TS to the C++
WP

Pablo Halpern phalpern@halpernwightsoftware.com

2019-06-14 | Target audience: LWG

1 Abstract
When the polymorphic allocator infrastructure was moved from the Library Fundamentals TS to the C++17
working draft, pmr::resource_adaptor was left behind. The decision not to move pmr::resource_adaptor
was deliberately conservative, but the absence of resource_adaptor in the standard is a hole that must be
plugged for a smooth transition to the ubiquitous use of polymorphic_allocator, as proposed in P0339
and P0987. This paper proposes that pmr::resource_adaptor be moved from the LFTS and added to the
C++20 working draft.

2 History
2.1 Changes from R2 to R3 (in Kona and pre-Cologne)

• Changed resource-adaptor-imp to kabob case.
• Removed special member functions (copy/move ctors, etc.) and let them be auto-generated.
• Added a requirement that the Allocator template parameter must support rebinding to any non-class,

non-over-aligned type. This allows the implementation of do_allocate to dispatch to a suitably
rebound copy of the allocator as needed to support any native alignment argument.

2.2 Changes from R1 to R2 (in San Diego)
• Paper was forwarded from LEWG to LWG on Tuesday, 2018-10-06
• Copied the formal wording from the LFTS directly into this paper
• Minor wording changes as per initial LWG review
• Rebased to the October 2018 draft of the C++ WP

2.3 Changes from R0 to R1 (pre-San Diego)
• Added a note for LWG to consider clarifying the alignment requirements for resource_adaptor<A>::do_allocate().
• Changed rebind type from char to byte.
• Rebased to July 2018 draft of the C++ WP.

3 Motivation
It is expected that more and more classes, especially those that would not otherwise be templates, will
use pmr::polymorphic_allocator<byte> to allocate memory. In order to pass an allocator to one of
these classes, the allocator must either already be a polymorphic allocator, or must be adapted from a
non-polymorphic allocator. The process of adaptation is facilitated by pmr::resource_adaptor, which is a
simple class template, has been in the LFTS for a long time, and has been fully implemented. It is therefore
a low-risk, high-benefit component to add to the C++ WP.

1

mailto:phalpern@halpernwightsoftware.com
http://wg21.link/p0339
http://wg21.link/p0987


4 Impact on the standard
pmr::resource_adaptor is a pure library extension requiring no changes to the core language nor to any
existing classes in the standard library.

5 Formal Wording
This proposal is based on the Library Fundamentals TS v2, N4617 and the March 2019 draft of the C++ WP,
N4810.

In section 19.12.1 [mem.res.syn] of the C++ WP, add the following declaration immediately after the
declaration of operator!=(const polymorphic_allocator...):

// 19.12.x resource adaptor
// The name resource-adaptor-imp is for exposition only.
template <class Allocator> class resource-adaptor-imp;

template <class Allocator>
using resource_adaptor = resource-adaptor-imp<

typename allocator_traits<Allocator>::template rebind_alloc<byte>>;

Insert between sections 19.12.3 [mem.poly.allocator.class] and 19.12.4 [mem.res.global] of the C++ WP, the
following section, taken with modifications from section 8.7 of the LFTS v2:

19.12.x template alias resource_adaptor [memory.resource.adaptor]

19.12.x.1 resource_adaptor [memory.resource.adaptor.overview]

An instance of resource_adaptor<Allocator> is an adaptor that wraps a memory_resource interface
around Allocator. resource_adaptor<X<T>> and resource_adaptor<X<U>> are the same type for any
allocator template X and types T and U. In addition to the Cpp17Allocator requirements (§15.5.3.5), the
Allocator parameter to resource_adaptor shall meet the following additional requirements:

• typename allocator_traits<Allocator>::pointer shall denote the type allocator_traits<
Allocator>::value_type*.

• typename allocator_traits<Allocator>::const_pointer shall denote the type to allocator_traits<
Allocator>::value_type const*.

• typename allocator_traits<Allocator>::void_pointer shall denote the type void*.

• typename allocator_traits<Allocator>::const_void_pointer shall denote the type void
const*.

• Calls to allocator_traits<Allocator>::template rebind_traits<T>::allocate and allocator_traits<
Allocator>::template rebind_traits<T>::deallocate shall be well-formed for all non-class, non-
over-aligned types T; no diagnostic required.

// The name resource-adaptor-imp is for exposition only.
template <class Allocator>
class resource-adaptor-imp : public memory_resource {

Allocator m_alloc; // exposition only

public:
using allocator_type = Allocator;

resource-adaptor-imp() = default;
resource-adaptor-imp(const resource-adaptor-imp&) = default;
resource-adaptor-imp(resource-adaptor-imp&&) = default;

2 Pablo Halpern

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/n4617.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2019/n4810.pdf


explicit resource-adaptor-imp(const Allocator& a2);
explicit resource-adaptor-imp(Allocator&& a2);

resource-adaptor-imp& operator=(const resource-adaptor-imp&) = default;

allocator_type get_allocator() const { return m_alloc; }

protected:
void* do_allocate(size_t bytes, size_t alignment) override;
void do_deallocate(void* p, size_t bytes, size_t alignment) override;
bool do_is_equal(const memory_resource& other) const noexcept override;

};

19.12.x.2 resource-adaptor-imp constructors [memory.resource.adaptor.ctor]

explicit resource-adaptor-imp(const Allocator& a2);

Effects: Initializes m_alloc with a2.

explicit resource-adaptor-imp(Allocator&& a2);

Effects: Initializes m_alloc with std::move(a2).

19.12.x.3 resource-adaptor-imp member functions [memory.resource.adaptor.mem]

void* do_allocate(size_t bytes, size_t alignment);

Expects: alignment is a power of two.

Returns: a pointer to allocated storage obtained by calling the allocate member function on
a suitably rebound copy of m_alloc such that the expected size and alignment of the allocated
memory are at least bytes and alignment, respectively. If the rebound Allocator supports over-
aligned storage, then resource_adaptor<Allocator> should also support over-aligned storage.

Throws: nothing unless the underlying allocator throws.

void do_deallocate(void* p, size_t bytes, size_t alignment);

Expects: p has been returned from a prior call to allocate(bytes, alignment) on a memory
resource equal to *this, and the storage at p shall not yet have been deallocated.

Effects: Returns memory to the allocator using m_alloc.deallocate.

bool do_is_equal(const memory_resource& other) const noexcept;

Let p be dynamic_cast<const resource-adaptor-imp*>(&other).

Returns: false if p is null; otherwise the value of m_alloc == p->m_alloc.

6 References
N4810; Working Draft, Standard for Programming Language C++, Richard Smith, editor, 2019-03-15.

N4617: Programming Languages - C++ Extensions for Library Fundamentals, Version 2, 2016-11-28.

P0339: polymorphic_allocator<> as a vocabulary type, Pablo Halpern, 2018-04-02.

P0987: polymorphic_allocator instead of type-erasure, Pablo Halpern, 2018-04-02.

3 Pablo Halpern

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2019/n4810.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/n4617.pdf
http://wg21.link/p0339
http://wg21.link/p0987

	Abstract
	History
	Changes from R2 to R3 (in Kona and pre-Cologne)
	Changes from R1 to R2 (in San Diego)
	Changes from R0 to R1 (pre-San Diego)

	Motivation
	Impact on the standard
	Formal Wording
	References

