
Paper Number: P1068R1

Title: Vector API for random number generation

Authors: Ilya Burylov <ilya.burylov@intel.com>

 Pavel Dyakov <pavel.dyakov@intel.com>

 Ruslan Arutyunyan <Ruslan.Arutyunyan@intel.com>

 Andrey Nikolaev <Andrey.Nikolaev@intel.com>

Audience: SG1 (Parallelism & Concurrency)

Date: 2019-06-13

I. Introduction
C++11 introduced a comprehensive mechanism to manage generation of random numbers in the

<random> header file.

We propose to introduce an additional API based on iterators in alignment with algorithms definition.

II. Revision history
Key changes compared with R0:

 Extended the list of possible approaches with simd type direct usage

 Added performance data measured on the prototype

 Changed the recommendation to a combined approach

III. Motivation and Scope
The C++11 random-number API is essentially a scalar one. Stateful nature of Engine algorithms and the

scalar definition of underlying algorithms prevent auto-vectorization by compiler.

However, most existing algorithms for generation of pseudo- or quasi-random numbers allow

algorithmic rework to generate numbers in batches, which allows the implementation to utilize SIMD-

based HW instruction sets.

Internal measurements show significant scaling over SIMD-size for key baseline Engines yielding an

order of magnitude performance difference on the table on modern HW architectures.

Extension and/or modification of the list of supported Engines and/or Distributions is out of the scope of

this proposal.

IV. Libraries and other languages
Vector APIs are common for the area of generation random numbers. Examples:

* Intel(R) Math Kernel Library (Intel® MKL)

 - Statistical Functions component includes Random Number Generators C vector based API

* Java* java.util.Random

 - Has doubles(), ints(), longs() methods to provide a stream of random numbers

* Python* NumPy* library

 - NumPy array has a method to be filled with random numbers

* NVIDIA* cuRAND

mailto:ilya.burylov@intel.com
mailto:pavel.dyakov@intel.com
mailto:Ruslan.Arutyunyan@intel.com
mailto:Andrey.Nikolaev@intel.com

 - host API is vector based

Intel MKL can be an example of the existing vectorized implementation for verity of engines and

distributions. Existing API is C [1] (and FORTRAN), but the key property which allows enabling

vectorization is vector-based interface.

Another example of implementation can be intrinsics for the Short Vector Random Number Generator

Library [2], which provides an API on SIMD level and can be considered an example of internal

implementation for proposed modifications.

V. Problem description
Main flow of random number generation is defined as a 3-level flow.

User creates Engine and Distribution and calls operator() of Distribution object, providing Engine as a

parameter:

operator() of a Distribution typically (but not necessarily so) implements scalar algorithm and calls

generate_canonical(), passing Engine object further down:

generate_canonical() has a main intention to generate enough entropy for the type used by

Distribution, and it calls operator() of an Engine one or more times (number of times is a compile-time

constant):

operator() of an Engine is (almost) always stateful, with non-trivial dependencies between iterations,

which prevents any auto-vectorization:

uniform_real_distribution::operator()(_URNG& __gen)

{

return (b() - a()) * generate_canonical<_RealType>(__gen) + a();

}

_RealType generate_canonical(_URNG& __gen())

{

…

_RealType _Sp = __gen() - _URNG::min();

for (size_t __i = 1; __i < __k; ++__i, __base *= _Rp)

_Sp += (__gen() - _URNG::min()) * __base;

return _Sp / _Rp;

}

mersenne_twister_engine<…>::operator()()

{

const size_t __j = (__i_ + 1) % __n;

…

const result_type _Yp = (__x_[__i_] & ~__mask) | (__x_[__j] & __mask);

const size_t __k = (__i_ + __m) % __n;

__x_[__i_] = __x_[__k] ^ __rshift<1>(_Yp) ^ (__a * (_Yp & 1));

result_type __z = __x_[__i_] ^ (__rshift<__u>(__x_[__i_]) & __d);

__i_ = __j;

…

return __z ^ __rshift<__l>(__z);

}

Operator() of most distributions can be implemented in a way, which compiler can inline and auto-

vectorize. generate_canonical() adds additional challenge for the compiler due to loop, but it is

resolvable. Operator() is the key showstopper for the auto-vectorization.

VI. Possible approaches to address the problem
There are several approaches to address vectorization gap:

a) Internal bufferization
operator() of an Engine implementation can generate values in chunks of predefined size and store

chunk in internal buffer. If buffer is not empty, implementation can pop value from the chunk and

return it, otherwise generate next chunk and return first value from it.

std::array<float, arrayLength> stdArray;

std::minstd_rand0 genStd(555);

std::uniform_real_distribution<float> disFloat(0.0f, 1.0f);

for (int j = 0; j < arrayLength; ++j)

 stdArray[j] = disFloat(genStd);

Pros

 Existing standard API is not modified

 Optimization details are hidden from user space

Cons

 Compiler may not be always able to optimize out intermediate memory storage

 Low-level user code tuning is hard, due to no control on user level

 Instable performance of operator() (requirement of amortized constant complexity is fulfilled

though)

b) Explicit iterators-based API
API of Engines and Distributions is extended with iterators based API.

std::array<float, arrayLength> stdArray;

std::experimental::minstd_rand0 genStd(555);

std::experimental::uniform_real_distribution<float> disFloat(0.0f, 1.0f);

disFloat(stdArray.begin(), stdArray.end(), genSvrng);

Note: Additional design considerations section address additional questions of naming and member-

functions vs. standalone function aspects of iterators-based API.

Note: Additional design considerations section address additional questions of scalar-API values

consistency.

Pros

 Optimization details are hidden from user space

 This API does not enforce any specific underlying implementation and can result in several

possible optimization strategies to achieve vectorization

 Interface is similar to existing iterators-based API for algorithms with straightforward user-level

optimization strategy

 API matches important use case of generation random numbers in block

Cons

 Low-level user code tuning is hard, due to no control on user level

 Changes required on generate_canonical() level may become a guarantee of Distribution

API (as opposed to require Distribution to call generate_canonical() internally), which

makes API less consistent.

c) Explicit simd-based API
API of Engines and Distributions is extended to allow simd-like type from Parallelism TS part 2 as a base

type.

std::array<float, arrayLength > stdArray;

using simd32f = std::experimental::fixed_size_simd<float, 32>;

std::experimental::minstd_rand0 genSvrng(555);

std::experimental::uniform_real_distribution<simd32f> disSimd(0.0f,1.0f);

for (int j= 0; j < arrayLength; j += simd32f::size())

{

 simd32f s = disSimd(genSvrng);

 for (int k = 0; k < simd32f::size(); k++)

 stdArray[j+k] = s[k];

}

int tail = arrayLength % simd32f::size();

if(tail > 0)

{

 simd32f s = disSimd(genSvrng);

 for (int k = 0; k < tail; k++)

 stdArray[arrayLength – tail + k] = s[k];

}

Pros

 Optimizations details are very explicit, which allows low-level user code tuning

Cons

 User is responsible for dealing with blocking and tail calculation

 Changes required on generate_canonical() level may become a guarantee of Distribution

API, which makes API less consistent.

d) Teach compiler to recognize specific engines and distributions
Intel® C/C++ compiler implements intrinsic functions in the Short Vector Random Number Generator

Library [2]. These intrinsic functions can be used underneath existing C++ Standard Library scalar APIs

and result in vectorization of the code without changing API.

std::array<float, arrayLength> stdArray;

std::minstd_rand0 genStd(555);

std::uniform_real_distribution<float> disFloat(0.0f, 1.0f);

for (int j = 0; j < arrayLength; ++j)

 stdArray[j] = disFloat(genStd);

Pros

 Existing standard API is not modified

 Optimization details are hidden from user space

Cons

 Implementation is based on compiler-specific extensions, which are not expressible in current

state of OpenMP* #pragma simd APIs, which makes it vendor-specific

 Low-level user code tuning is hard, due to no control on user level

VII. Additional design considerations

a) Numerical results considerations
There is an open question, whether the results generated by vectorized implementation shall be

equivalent to the sequence of scalar APIs.

It is natural to expect from user perspective, but things become more complicated, when

generate_canonical() results in several calls to the underlying Engine.

Assuming we have a simd size equal simd_size, generate_canonical() enforces using 2 Engine

values per one distribution value, engine values e[i=0..7] and distribution values d[j=0..3].

Scalar implementation will use values e[k*2] and e[k*2+1] for d[k] value.

Optimal vector implementation will use e[(k/simd_size)*simd_size*2 + k%simd_size] and

e[(k/simd_size)*simd_size*2 + k%simd_size + simd_size] (we use k-th value of first

generated simd and k-th value of second generated simd), which is not only different from previous one,

but also simd_size dependent.

Several options to address that:

 Explicitly allow different sequence for Distribution results (but enforce the same sequence for

Engine results).

o generate_canonical() can be extended with simd-based interface and/or iterators-

based interface, but internal logic stays mostly similar to existing one

 Explicitly the same sequence with either:

o Extend generate_canonical() logic to add values transposition, which may limit

freedom of optimization strategies with predefined computational flow

o Vector-centric APIs to take responsibility of ensuring generate_canonical-like

implementation underneath without explicit calls of generate_canonical()

o Drop the requirement to use more than one result of underlying Engine for single

Distribution value

 Add user level switch to enable/disable same sequence requirement:

o Iterators-based API can be extended with Execution policy with seq and unseq policies

supported.

b) Implementation options for iterator-based interface
There are several API considerations for iterators based API

 Member function operator()

dist(stdArray.begin(), stdArray.end(), engine);

o API described in previous chapter

o Aligned with existing way to use scalar API via operator()

 Member function generate()

dist.generate(stdArray.begin(), stdArray.end(),engine);

o Brings some connection with std::generate function, which has similar intention of

filling a container with values

 Reuse std::generate()

o Current API of std::generate() is insufficient to use with Distribution API directly,

because the latter does not accept arguments for passing to operator()

std::generate(data.begin(), data.end(), [&]() {return dist(engine);});

o This limits opportunities, for customization of behavior for the given Engine and/or

Distribution with specific optimizations

 Introduce a new standalone function std::generate_rng(), which will pass the required

argument to operator() of the distribution

std::generate_rng(data.begin(), data.end(), dist, engine);

o This implementation leaves opportunities for customization on a library level, having

both types of Engine and Distribution in the function template arguments

VIII. Performance results
Possible implementation approaches were prototyped in part of Distribution API (and Engine API, where

required for the usecase). Short Vector Random Number Generator Library [2] was used as an

underlying vectorization engine. LLVM* libc++ 8.0 implementation was used as a baseline

implementation.

std::minstd_rand0 was chosen as an Engine (generated numbers were verified to be bit-to-bit

identical with LLVM baseline implementation).

std::uniform_real_distribution<float> was chosen as a Distribution (generate_canonical()

for this pair of Engine and Distribution shall result in single Engine operator() call, and thus avoids

complexity described in Additional design considerations section).

Two benchmarks were chosen to collect performance data.

Benchmarks compiled with Intel® C++ Compiler 19.0, measured on Intel® Xeon® Silver 4116 CPU @

2.10GHz.

a) Fill std::array benchmark
This is an implementation of reference benchmark:

std::array<float, 128> stdArray;

std::minstd_rand0 genStd(555);

std::uniform_real_distribution<float> disFloat(0.0f, 1.0f);

for (int j=0; j < 128; ++j)

 stdArray[j] = disFloat(genStd);

The difference in implementation of the benchmark is discussed in possible approaches chapter.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Baseline: LLVM 8.0
implementation

a) Engine result
bufferization

b) iterators-based API c) simd-based API d) intrinsics-based API

Fill std::array Benchmark
(speedup, higher is better)

The results show up to 6x speedup, with options a-d) show comparable performance.

b) Monte Carlo Pi estimation benchmark
This is an implementation of reference benchmark:

 int nsamples = 128000000;

 std::minstd_rand0 genStd(555);

 std::uniform_real_distribution<float> disFloat(0.f, 1.f);

 int dbUnderCurve = 0;

 for (int i = 0; i < nsamples; ++i)

 {

 float dbX = disFloat(genStd);

 float dbY = disFloat(genStd);

 if (dbX*dbX + dbY*dbY <= 1.0)

 dbUnderCurve++;

 }

 float dbPiEst = 1.f * dbUnderCurve / nsamples * 4.f;

This benchmark showed different requirements needed for user level tuning of the implementation:

 Internal bufferization inside engine, leaves vectorization on low-level loop, which limits

vectorization opportunities of user–level loops

 Straightforward usage of iterators-based API results in generation of all required random

numbers in the intermediate buffer, which improves the performance from the baseline, but

has additional potential for results bufferization on user side to reuse CPU L1 cache

 Simd-based API requires low-level programming by API definition

 Straightforward usage of intrinsics-based version, meets implementation limitation, were

compiler cannot auto-vectorize generation of 2 random numbers in a loop, because of

requirement to maintain scalar-like RNG sequence. Additional bufferization is needed to

overcome this limitation

The results show up to 8.5x speedup with options c), a 6.3x speedup for options b) and d), up to 3.3x

with option a).

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

Baseline: LLVM
8.0

implementation

a) Engine result
bufferization

b) iterators-
based API

b) iterators-
based API (with

user-level
bufferization)

c) simd-based
API

d) intrinsics-
based API

d) intrinsics-
based API (with

user-level
bufferization)

Monte Carlo Pi Estimation Benchmark
(speedup, higher is better)

IX. Recommendation
Options b) Iterators-based API and c) Simd-based API are not mutually exclusive and can be

recommended for implementation in the standard:

 c) simd-based API addresses request of low level optimization, when user is willing to get

maximum performance for the price of additional coding;

 b) iterators-based API addresses the common use case of generating numbers in blocks with

straightforward performance achieving strategy.

Options a) and d) do not require standard modifications to be applied, but have significant downsides,

which does not allow them replacing options with explicit API extensions:

 a) internal bufferization option is sub-par performance-wise by design;

 d) compiler intrinsics-options required non-standard compiler modifications and prevents

portable library-only implementations.

X. Impact On the Standard
This is a library-only extension. It adds new member functions to some classes but does not change any

existing functions, nor enforce adding additional data members or virtual functions. It can, therefore, be

ABI compatible with existing implementations.

XI. Summary of changes
The following wording is relative to the C++17 standard. Future revisions of this proposal will include

exact sections and deltas.

The engine classes are modified with an additional member function in generating functions section

 class linear_congruential_engine;

 class mersenne_twister_engine;

 class subtract_with_carry_engine;

 class discard_block_engine;

 class independent_bits_engine;

 class shuffle_order_engine;

Added function (with example of trivial implementation):

template<class OutputIt>

void operator()(OutputIt first, OutputIt last) {

 for (; first != last; ++first) {

 *first = operator()();

 }

}

Additional iterator version of generate canonical function (with example of trivial implementation):

template<class RealType, size_t bits, class URBG, class OutputIt>

void generate_canonical(OutputIt first, OutputIt last, URBG& g) {

 for (; first != last; ++first) {

 *first = generate_canonical<RealType, bits, URBG>(g);

 }

}

The distribution classes are modified with two additional member functions in generating functions

section

 class uniform_int_distribution;

 class uniform_real_distribution;

 class bernoulli_distribution;

 class binomial_distribution;

 class geometric_distribution;

 class negative_binomial_distribution;

 class poisson_distribution;

 class exponential_distribution;

 class gamma_distribution;

 class weibull_distribution;

 class extreme_value_distribution;

 class normal_distribution;

 class lognormal_distribution;

 class chi_squared_distribution;

 class cauchy_distribution;

 class fisher_f_distribution;

 class student_t_distribution;

 class discrete_distribution;

 class piecewise_constant_distribution;

 class piecewise_linear_distribution;

Added functions (with example of trivial implementation):

template<class OutputIt, class URBG>

result_type operator()(OutputIt first, OutputIt last, URBG& g) {

 for (; first != last; ++first) {

 *first = operator()(g);

 }

}

template<class OutputIt, class URBG>

result_type operator()(OutputIt first, OutputIt last, URBG& g, const

param_type& parm) {

 for (; first != last; ++first) {

 *first = operator()(g, parm);

 }

}

An optimized implementation should ensure exactly the same result as trivial implementation based on

scalar function calls.

Existing library components do not depend on the proposed change, only new APIs added.

XII. References
1. Intel MKL documentation:

https://software.intel.com/en-us/mkl-developer-reference-c-2019-beta-basic-generators

2. Intrinsics for the Short Vector Random Number Generator Library

https://software.intel.com/en-us/node/694866

https://software.intel.com/en-us/mkl-developer-reference-c-2019-beta-basic-generators
https://software.intel.com/en-us/node/694866

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY

ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED

WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO

FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,

COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on

Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using

specific computer systems, components, software, operations and functions. Any change to any of

those factors may cause the results to vary. You should consult other information and performance

tests to assist you in fully evaluating your contemplated purchases, including the performance of that

product when combined with other products.

Copyright © 2019, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune,

Cilk, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for

optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and

SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or

effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-

dependent optimizations in this product are intended for use with Intel microprocessors. Certain

optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer

to the applicable product User and Reference Guides for more information regarding the specific

instruction sets covered by this notice.

Notice revision #20110804

