
P1030R3: std::filesystem::path_view

Document #: P1030R3
Date: 2019-09-26
Project: Programming Language C++

Library Evolution Working Group
Reply-to: Niall Douglas

<s_sourceforge@nedprod.com>

A proposal for a std::filesystem::path_view, a non-owning view of explicitly unencoded or
encoded character sequences in the format of a local filesystem path, or a view of a binary key.

A mostly-conforming reference implementation of the proposed path view can be found at https://
github.com/ned14/llfio/blob/master/include/llfio/v2.0/path_view.hpp. It has been found
to work well on recent editions of GCC, clang and Microsoft Visual Studio, on x86, x64, ARM and
AArch64. It has been in production use for several years now.

Changes since R2 due to LEWG and SG16 Unicode feedback:
• A new path_view_component prevents Ranges getting confused when iterating a path

view.
• char source has been restored, it is the narrow system encoding.
• byte input has had its specification strengthened.
• Peeking off the end of input has been removed, now construction supplies whether

input is zero terminated or not.
• c_str can now generate many renditions of the path view via template parameter, and

the relationship to the filesystem native encoding has been weakened.
• Relative comparison operator overloads have been removed, as comparison is very

expensive, and anyone using path views in say a std::map should always define a
custom comparator (which is more efficient).

• Equality comparisons are now identity-based instead of lexicographic.
• After many, many exchanges with SG16 about how best to tame the evil of comparing

filesystem paths, I have come up with a whole new way of doing path view comparison
which hopefully ticks everybody’s boxes.

• Some asked for visitation of the source data, added.
• Default stack internal buffer size has been reduced to 1Kb characters.

Contents

1 Introduction 2

2 Impact on the Standard 3

3 Proposed Design 3

1

mailto:s_sourceforge@nedprod.com
https://github.com/ned14/llfio/blob/master/include/llfio/v2.0/path_view.hpp
https://github.com/ned14/llfio/blob/master/include/llfio/v2.0/path_view.hpp

3.1 path_view_component . 4
3.2 path_view . 7
3.3 Example of use . 11

4 Design decisions, guidelines and rationale 11
4.1 Fixed use of stack in struct c_str . 12
4.2 Path view consumer determines the path interpretation semantics 13

5 Technical specifications 15

6 Frequently asked questions 15
6.1 Does this mean that all APIs consuming std::filesystem::path ought to now con-

sume std::filesystem::path_view instead? . 15

7 Acknowledgements 15

8 References 15

1 Introduction

In the current C++ standard, the canonical way for supplying filesystem paths to C++ functions
which consume file system paths is std::filesystem::path. This wraps up
std::filesystem::path::string_type (= std::basic_string<Char>) with a platform specific
choice of Char (currently Microsoft Windows uses Char = wchar_t, everything else uses Char =
char) with iterators and member functions which parse the string according to the path delimiters
for that platform. For example std::filesystem::path on Microsoft Windows might parse this
string:

C:\Windows\System32\notepad.exe

into:

• root_name() = “C:”

• root_directory() = “\”

• root_path() = “C:\”

• relative_path() = “Windows\System32\notepad.exe”

• parent_path() = “C:\Windows\System32”

• filename() = “notepad.exe”

• stem() = “notepad”

• extension() = “.exe”

• *begin() = “C:”

2

• *++begin() = “/” (note the forward, not backward, slash. This is considered to be the name
of the root directory)

• *++++begin() = “Windows”

• *++++++begin() = “System32” (note no intervening slash)

For every one of these decompositions, a new path is returned, which means a new underlying
std::basic_string<Char>, which means a new memory allocation. In code which performs a lot
of path traversal and decomposition, these memory allocations, and the copying of fragments of
path around, can start to add up. For example, in [P1031] Low level file i/o library, a directory
enumeration costs around 250 nanoseconds per entry amortised. Each path construction might cost
that again. Therefore, for each item enumerated, one halves the directory enumeration performance
solely due to the choice of path, which is why P1031 uses path_view instead, and thus can enumerate
four million directory items per second, which makes handling ten million item plus directories
tractable.

There is also a negative effect on CPU caches of copying around path strings. Paths are increasingly
reaching hundred of bytes, as anyone running into the 260 path character limit on Microsoft Windows
can testify1. Every time one copies a path, one is evicting potentially useful data from the CPU
caches, which need not be evicted if one did not copy paths.

Enter thus the proposed std::filesystem::path_view, which is a lightweight reference to part,
or all of, a source of filesystem path data. It provides most of the same member functions as std
::filesystem::path, operating by constant and often constexpr reference upon some character
source which is in the format of the local platform’s file system path, or a generic path, same as
with std::filesystem::path. It is intended that for most functions currently accepting a std::

filesystem::path, they can now accept a std::filesystem::path_view instead with minor to
none refactoring of implementation.

2 Impact on the Standard

The proposed library is a pure-library solution.

3 Proposed Design

Much of the proposed path view is unsurprising, with a large subset of
std::filesystem::path’s observers and modifiers replicated (apart from path’s mutating functions,
which here are non-mutating and return new views instead). Constexpr abounds, and the path view
is trivially copyable and is thus suitable for passing around by value.

WG21 feedback suggested that iteration of path views ought to not return another path view, so
iteration returns path_view_component instead. I appreciate that this is a large divergence from
filesystem path, however feedback suggests that filesystem path is deficient in this regard.

1You can now build your Windows application with this limit removed for your program.

3

Path views represent a user unknown polymorphic view of characters or bytes. The proposed
supported path source encodings are:

1. char, the narrow native system encoding.

2. wchar_t, the wide native system encoding.

3. char8_t, UTF-8 encoding.

4. char16_t, UTF-16 encoding.

5. byte, raw encoded or unencoded bytes. This can mean ‘passthrough’ for some consumers of
path views, or may take on some other meaning depending on consumer.

3.1 path_view_component

Path view components look very much like path views, but do not offer path component iteration,
nor any of the path interpretation member functions based upon the filesystem path separator.

1 class path_view_component
2 {
3 public:
4 //! True if path views can be constructed from this character type.
5 //! i.e. is one of ‘char‘, ‘wchar_t‘, ‘char8_t‘, ‘char16_t‘
6 template <class Char> static constexpr bool is_source_chartype_acceptable;
7

8 //! True if path views can be constructed from this source.
9 //! i.e. ‘is_source_chartype_acceptable‘, or is ‘byte‘

10 template <class Char> static constexpr bool is_source_acceptable;
11

12 //! The default internal buffer size used by ‘c_str‘.
13 static constexpr size_t default_internal_buffer_size = 1024; // 2Kb for wchar_t, 1Kb for char
14

15 public:
16 path_view_component() = default;
17 path_view_component(const path_view_component &) = default;
18 path_view_component(path_view_component &&) = default;
19 path_view_component &operator=(const path_view_component &) = default;
20 path_view_component &operator=(path_view_component &&) = default;
21 ~path_view_component() = default;
22

23 //! True if empty
24 [[nodiscard]] constexpr bool empty() const noexcept;
25 constexpr bool has_stem() const noexcept;
26 constexpr bool has_extension() const noexcept;
27

28 //! Returns the size of the view in characters.
29 constexpr size_t native_size() const noexcept;
30

31 //! Swap the view with another
32 constexpr void swap(path_view_component &o) noexcept;
33

34 // True if the view contains any of the characters ‘*‘, ‘?‘, (POSIX only: ‘[‘ or ‘]‘).
35 constexpr bool contains_glob() const noexcept;
36

4

37 //! Returns a view of the filename without any file extension
38 constexpr path_view_component stem() const noexcept;
39

40 //! Returns a view of the file extension part of this view
41 constexpr path_view_component extension() const noexcept;
42

43 //! Return the path view as a path. Allocates and copies memory!
44 filesystem::path path() const;
45

46 /*! Compares the two path views for equivalence or ordering using ‘T‘
47 as the destination encoding, if necessary.
48

49 If the source encodings of the two path views are compatible, a
50 lexicographical comparison is performed. If they are incompatible,
51 either or both views are converted to the destination encoding
52 using ‘c_str<T, Delete, _internal_buffer_size>‘, and then a
53 lexicographical comparison is performed.
54

55 This can, for obvious reasons, be expensive. It can also throw
56 exceptions, as ‘c_str‘ does.
57

58 If the destination encoding is ‘byte‘, ‘memcmp()‘ is used,
59 and ‘c_str‘ is never invoked as the two sources are byte
60 compared directly.
61 */
62 template <class T = typename filesystem::path::value_type
63 class Deleter = std::default_delete<T[]>,
64 size_t _internal_buffer_size = default_internal_buffer_size
65 >
66 requires(path_view_component::is_source_acceptable<T>)
67 constexpr int compare(const path_view_component &p) const;
68

69 //! \overload
70 template <class T = typename filesystem::path::value_type
71 class Deleter = std::default_delete<T[]>,
72 size_t _internal_buffer_size = default_internal_buffer_size,
73 class Char
74 >
75 requires(path_view_component::is_source_acceptable<T> && path_view_component::

is_source_chartype_acceptable<Char>)
76 constexpr int compare(const Char *s) const;
77

78 //! \overload
79 template <class T = typename filesystem::path::value_type
80 class Deleter = std::default_delete<T[]>,
81 size_t _internal_buffer_size = default_internal_buffer_size,
82 class Char
83 >
84 requires(path_view_component::is_source_acceptable<T> && path_view_component::

is_source_chartype_acceptable<Char>)
85 constexpr int compare(const basic_string_view<Char> s) const;
86

87 /*! Instantiate from a ‘path_view_component‘ to get a path suitable for feeding to other code.
88

89 \tparam T The destination encoding required.
90 \tparam Deleter A custom deleter for any temporary buffer.

5

91 \tparam _internal_buffer_size Override the size of the internal temporary buffer, thus
92 reducing stack space consumption (most compilers optimise away the internal temporary buffer
93 if it can be proved it will never be used). The default is 1024 values of ‘T‘.
94

95 This makes the input to the path view component into a destination format suitable for
96 consumption by other code. If the source has the same format as the destination, and
97 the zero termination requirements are the same, the source is used directly without
98 memory copying nor reencoding.
99

100 If the format is compatible, but the destination requires zero termination,
101 and the source is not zero terminated, a straight memory copy is performed
102 into the temporary buffer.
103

104 ‘c_str‘ contains a temporary buffer sized according to the template parameter. Output
105 below that amount involves no dynamic memory allocation. Output above that amount calls
106 ‘operator new[]‘. You can use an externally supplied larger temporary buffer to avoid
107 dynamic memory allocation in all situations.
108 */
109 template <class T = typename filesystem::path::value_type,
110 class Deleter = std::default_delete<T[]>,
111 size_t _internal_buffer_size = default_internal_buffer_size
112 >
113 struct c_str
114 {
115 static_assert(is_source_acceptable<T>, "path_view_component::c_str<T> does not have a T which is

one of byte, char, wchar_t, char8_t nor char16_t");
116

117 //! Type of the value type
118 using value_type = T;
119 //! Type of the deleter
120 using deleter_type = Deleter;
121 //! The size of the internal temporary buffer
122 static constexpr size_t internal_buffer_size = (_internal_buffer_size == 0) ? 1 :

_internal_buffer_size;
123

124 //! Number of values, excluding zero terminating char, at buffer
125 size_t length{0};
126 //! Pointer to the possibly-converted path
127 const value_type *buffer{nullptr};
128

129 public:
130 /*! Construct, performing any reencoding or memory copying required.
131

132 \param view The path component view to use as source.
133 \param no_zero_terminate Set to true if zero termination is not required.
134 \param allocate A callable with prototype ‘value_type *(size_t length)‘ which
135 is defaulted to ‘return new value_type[length];‘. You can return ‘nullptr‘ if
136 you wish, the consumer of ‘c_str‘ will see a ‘buffer‘ set to ‘nullptr‘.
137

138 If an error occurs during any conversion from UTF-8 or UTF-16, an exception of
139 ‘system_error(errc::illegal_byte_sequence)‘ is thrown.
140

141 This is because if you tell ‘path_view‘ that its source is UTF-8 or UTF-16, then that
142 must be **valid** UTF. If you wish to supply UTF-invalid paths (which are legal
143 on most filesystems), use native narrow or wide encoded source, or binary.
144 */

6

145 template <class U>
146 c_str(const path_view_component &view,
147 bool no_zero_terminate,
148 U &&allocate);
149

150 //! \overload
151 c_str(const path_view_component &view,
152 bool no_zero_terminate = false);
153

154 ~c_str() = default;
155 c_str(const c_str &) = delete;
156 c_str(c_str &&) = delete;
157 c_str &operator=(const c_str &) = delete;
158 c_str &operator=(c_str &&) = delete;
159

160 private: // For exposition only ...
161 bool _call_deleter{false};
162 Deleter _deleter;
163

164 // MAKE SURE this is the final item in storage, the compiler will elide the storage
165 // under optimisation if it can prove it is never used.
166 value_type _buffer[internal_buffer_size]{};
167 };
168 };
169

170 // These are IDENTITY equality comparisons i.e. equality is same source encoding, same content
171 inline constexpr bool operator==(path_view_component x, path_view_component y) noexcept;
172 inline constexpr bool operator!=(path_view_component x, path_view_component y) noexcept;
173

174 inline std::ostream &operator<<(std::ostream &s, const path_view_component &v);
175

176 // relative comparison disabled
177 // hashing disabled
178

179 // Visitation of source representation, calls f(const T *, size_t, bool)
180 template<class F>
181 inline constepxr auto visit(F &&f, path_view_component);

3.2 path_view

1 class path_view
2 {
3 public:
4 //! Const iterator type
5 using const_iterator = path_view_iterator;
6 //! iterator type
7 using iterator = const_iterator;
8 //! Reverse iterator
9 using reverse_iterator = std::reverse_iterator<iterator>;

10 //! Const reverse iterator
11 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
12 //! Size type
13 using size_type = std::size_t;
14 //! Difference type

7

15 using difference_type = std::ptrdiff_t;
16

17 //! The preferred separator type
18 static constexpr auto preferred_separator = filesystem::path::preferred_separator;
19

20 public:
21 path_view() = default;
22 path_view(const path_view &) = default;
23 path_view(path_view &&) = default;
24 path_view &operator=(const path_view &) = default;
25 path_view &operator=(path_view &&) = default;
26 ~path_view() = default;
27

28 //! Implicitly constructs a path view from a path. The input path MUST continue to
29 //! exist for this view to be valid.
30 path_view(const filesystem::path &v) noexcept;
31

32 //! Implicitly constructs a path view from a path view component. The input path
33 //! MUST continue to exist for this view to be valid.
34 path_view(path_view_component v) noexcept;
35

36 //! Implicitly constructs a path view from a zero terminated ‘const char *‘.
37 //! The input string MUST continue to exist for this view to be valid.
38 constexpr path_view(const char *v) noexcept;
39

40 //! Implicitly constructs a path view from a zero terminated ‘const wchar_t *‘.
41 //! The input string MUST continue to exist for this view to be valid.
42 constexpr path_view(const wchar_t *v) noexcept;
43

44 //! Implicitly constructs a path view from a zero terminated ‘const char8_t *‘.
45 //! The input string MUST continue to exist for this view to be valid.
46 constexpr path_view(const char8_t *v) noexcept;
47

48 //! Implicitly constructs a path view from a zero terminated ‘const char16_t *‘.
49 //! The input string MUST continue to exist for this view to be valid.
50 constexpr path_view(const char16_t *v) noexcept;
51

52

53 /*! Constructs a path view from a lengthed array of one of
54 ‘byte‘, ‘char‘, ‘wchar_t‘, ‘char8_t‘ or ‘char16_t‘. The input
55 string MUST continue to exist for this view to be valid.
56 */
57 template<class Char>
58 requires(path_view_component::is_source_acceptable<Char>)
59 constexpr path_view(const Char *v,
60 size_t len,
61 bool is_zero_terminated) noexcept;
62

63 /*! Constructs from a basic string if the character type is one of
64 ‘char‘, ‘wchar_t‘, ‘char8_t‘ or ‘char16_t‘.
65 */
66 template<class Char>
67 requires(path_view_component::is_source_chartype_acceptable<Char>)
68 constexpr path_view(const std::basic_string<Char> &v) noexcept;
69

70 /*! Constructs from a basic string view if the character type is one of

8

71 ‘char‘, ‘wchar_t‘, ‘char8_t‘ or ‘char16_t‘.
72 */
73 template<class Char>
74 requires(path_view_component::is_source_chartype_acceptable<Char>)
75 constexpr path_view(basic_string_view<Char> v,
76 bool is_zero_terminated) noexcept;
77

78

79 //! Swap the view with another
80 constexpr void swap(path_view &o) noexcept;
81

82 //! True if empty
83 [[nodiscard]] constexpr bool empty() const noexcept;
84 constexpr bool has_root_path() const noexcept;
85 constexpr bool has_root_name() const noexcept;
86 constexpr bool has_root_directory() const noexcept;
87 constexpr bool has_relative_path() const noexcept;
88 constexpr bool has_parent_path() const noexcept;
89 constexpr bool has_filename() const noexcept;
90 constexpr bool has_stem() const noexcept;
91 constexpr bool has_extension() const noexcept;
92 constexpr bool is_absolute() const noexcept;
93 constexpr bool is_relative() const noexcept;
94

95 // True if the path view contains any of the characters ‘*‘, ‘?‘, (POSIX only: ‘[‘ or ‘]‘).
96 constexpr bool contains_glob() const noexcept;
97

98 #ifdef _WIN32
99 // True if the path view is a NT kernel path starting with ‘\!!\‘ or ‘\??\‘

100 constexpr bool is_ntpath() const noexcept;
101 #endif
102

103 //! Returns an iterator to the first path component
104 constexpr inline const_iterator cbegin() const noexcept;
105 //! Returns an iterator to the first path component
106 constexpr inline const_iterator begin() const noexcept;
107 //! Returns an iterator to the first path component
108 constexpr inline iterator begin() noexcept;
109 //! Returns an iterator to after the last path component
110 constexpr inline const_iterator cend() const noexcept;
111 //! Returns an iterator to after the last path component
112 constexpr inline const_iterator end() const noexcept;
113 //! Returns an iterator to after the last path component
114 constexpr inline iterator end() noexcept;
115

116 //! Returns a copy of this view with the end adjusted to match the final separator.
117 constexpr path_view remove_filename() const noexcept;
118

119 //! Returns the size of the view in characters.
120 constexpr size_t native_size() const noexcept;
121

122 //! Returns a view of the root name part of this view e.g. C:
123 constexpr path_view root_name() const noexcept;
124

125 //! Returns a view of the root directory, if there is one e.g. /
126 constexpr path_view root_directory() const noexcept;

9

127

128 //! Returns, if any, a view of the root path part of this view e.g. C:/
129 constexpr path_view root_path() const noexcept;
130

131 //! Returns a view of everything after the root path
132 constexpr path_view relative_path() const noexcept;
133

134 //! Returns a view of the everything apart from the filename part of this view
135 constexpr path_view parent_path() const noexcept;
136

137 //! Returns a view of the filename part of this view.
138 constexpr path_view_component filename() const noexcept;
139

140 //! Returns a view of the filename without any file extension
141 constexpr path_view_component stem() const noexcept;
142

143 //! Returns a view of the file extension part of this view
144 constexpr path_view_component extension() const noexcept;
145

146 //! Return the path view as a path. Allocates and copies memory!
147 filesystem::path path() const;
148

149 /*! Compares the two path views for equivalence or ordering using ‘T‘
150 as the destination encoding, if necessary.
151

152 If the source encodings of the two path views are compatible, a
153 lexicographical comparison is performed. If they are incompatible,
154 either or both views are converted to the destination encoding
155 using ‘c_str<T, Delete, _internal_buffer_size>‘, and then a
156 lexicographical comparison is performed.
157

158 This can, for obvious reasons, be expensive. It can also throw
159 exceptions, as ‘c_str‘ does.
160

161 If the destination encoding is ‘byte‘, ‘memcmp()‘ is used,
162 and ‘c_str‘ is never invoked as the two sources are byte
163 compared directly.
164 */
165 template <class T = typename filesystem::path::value_type
166 class Deleter = std::default_delete<T[]>,
167 size_t _internal_buffer_size = path_view_component::default_internal_buffer_size
168 >
169 requires(path_view_component::is_source_acceptable<T>)
170 constexpr int compare(const path_view_component &p) const;
171

172 //! \overload
173 template <class T = typename filesystem::path::value_type
174 class Deleter = std::default_delete<T[]>,
175 size_t _internal_buffer_size = path_view_component::default_internal_buffer_size,
176 class Char
177 >
178 requires(path_view_component::is_source_acceptable<T> && path_view_component::

is_source_chartype_acceptable<Char>)
179 constexpr int compare(const Char *s) const;
180

181 //! \overload

10

182 template <class T = typename filesystem::path::value_type
183 class Deleter = std::default_delete<T[]>,
184 size_t _internal_buffer_size = path_view_component::default_internal_buffer_size,
185 class Char
186 >
187 requires(path_view_component::is_source_acceptable<T> && path_view_component::

is_source_chartype_acceptable<Char>)
188 constexpr int compare(const basic_string_view<Char> s) const;
189

190 //! Instantiate from a ‘path_view‘ to get a path suitable for feeding to other code.
191 //! See ‘path_view_component::c_str‘.
192 template <class T = typename filesystem::path::value_type,
193 class Deleter = std::default_delete<T[]>,
194 size_t _internal_buffer_size = path_view_component::default_internal_buffer_size
195 >
196 struct c_str
197 };
198

199 // These are IDENTITY equality comparisons i.e. equality is same source encoding, same content
200 inline constexpr bool operator==(path_view x, path_view y) noexcept;
201 inline constexpr bool operator!=(path_view x, path_view y) noexcept;
202

203 inline std::ostream &operator<<(std::ostream &s, const path_view &v);
204

205 // relative comparison disabled
206 // hashing disabled
207

208 // Visitation of source representation, calls f(const T *, size_t, bool)
209 template<class F>
210 inline constepxr auto visit(F &&f, path_view);

3.3 Example of use

The use idiom would be as follows:

1 int open_file(path_view path)
2 {
3 // I am on POSIX which requires zero terminated char filesystem paths.
4 // So here if the view is zero terminated, and the view refers to
5 // char*, char8_t* or byte data, we can use it directly without memory copying.
6 path_view::c_str<> p(path);
7 return ::open(p.buffer, O_RDONLY);
8 }

4 Design decisions, guidelines and rationale

There are a number of non-obvious design decisions in the proposed path view object. These
decisions were taken after a great deal of empirical trial and error with ‘more obvious’ designs,
where those designs were found wanting in various ways. The author believes that the current set
of tradeoffs is close to the ideal set.

11

The design imperatives for an allocating std::filesystem::path are not those for a non-allocating
std::filesystem::path_view. A ‘handy feature’ of an allocating path object is that it must always
copy its input into its allocation. If it is allocating memory and copying the path content in any
case, performing an implicit conversion of a native narrow input encoding to say a native wide
encoding seems like a reasonable design choice, given the relative cost of the other overheads.

In the case of a path view however, we are trying very hard to not copy memory. If the local
platform uses the same narrow or wide input encoding as the source backing the view, and the
path view is already terminated by a null character where that is relevant on the local platform,
no copying is required. The original is used unmodified, bytes are passed through as-is. Only if
necessary, a copy and/or conversion of the input onto the stack is performed into whatever format
the local platform requires.

One might argue that in the case of std::filesystem::path, we might reuse the path across
multiple calls, and thus the path view approach of just-in-time copying per syscall is wasteful on
those platforms. However it is exceeding rare to open the same file more than once, and anyone
caring strongly about performance will simply modify their source to use the same native encoding
and null termination as the platform.

The next argument is usually one of the form that paths get commonly reused with just the leafname
modified, and therefore path’s approach is more efficient as only the leafname gets converted per
iteration. I would counter that this proposed path view object comes from [P1031] Low level file
i/o library where using absolute paths is bad form: you use a path_handle to indicate the base
directory and supply a path view for the leafname – this is far more efficient than any absolute
path based mechanism as it avoids the kernel having to traverse the filesystem hierarchy, typically
taking a read lock on each inode in the absolute path.

4.1 Fixed use of stack in struct c_str

Firstly, note that the compiler elides completely the fixed stack buffer for zero termination and
UTF conversions caused by instantiating struct c_str if the compiler can prove that it will never
be used. So if you supply native format, zero terminated input, to the path view constructor, the
compiler should spot that the temporary stack buffer is never used, and thus eliminate it. This
ought to be the case most of the time, especially under link time optimisation.

Secondly, the fixed stack buffer tends to get allocated just before a syscall, and released just after
that syscall. Stack cache locality is therefore generally unaffected, and the fixed stack buffer does
not remain allocated for long. It is thus a once-off stack allocation.

Microsoft Windows systems can have a maximum path of 64Kb, but most paths are likely to be
under 1024 codepoints. Of the major POSIX implementations, PATH_MAX is 4096 for Linux, MacOS
1024, FreeBSD 1024. All this suggests that a reasonable default for the internal buffer ought to be
1024 codepoints, which is one of 1Kb, 2Kb or 4Kb of stack consumption depending on what the
path view consumer is rendering to.

Thus, on Microsoft Windows and Linux only, if the input path exceeds 1024 codepoints, malloc()
will be used to create a temporary internal buffer. On MacOS and FreeBSD, the internal buffer is
always large enough.

12

For those Linux implementations running on embedded systems where 1Kb stack allocations would
be unwise, we do provide for the ability to choose a smaller fixed size buffer in the template param-
eter, and override the custom allocator to issue a trap if the smaller path limit is exceeded.

Again, I would stress that the programmer can be careful to never send a non-zero terminated string
in as a path, and thus completely eliminate the use of temporary buffers on an embedded Linux
solution. In any case, path views are considerably less heavy on free RAM than std::filesystem

::path.

4.2 Path view consumer determines the path interpretation semantics

Path view has been designed around the consumer defining what reencoding semantics are in play.
For example, a Java JNI might define UTF-16 as the destination encoding for c_str irrespective of
the native filesystem encoding or platform, and all input is therefore converted to UTF-16 by the
JNI’s use of c_str. This is why .compare() is templated exactly as c_str is templated, and it is on
whomever consumes filesystem path views to define a locally customised path_view if the defaults
are inappropriate for their use case.

Some have asked for detailed reencoding semantics for the filesystem. Here are those as defined by
[P1031] Low level file i/o, but let me stress once again that it is the consumer of path views which
defines how path views are to be interpreted.

These are the path interpretation semantics applied to consuming path views by LLFIO on POSIX:

• char = Unix format paths, native filesystem encoding.

• wchar_t = Unix format paths (UTF-32). This is converted C++-side to the native filesystem
encoding at the point of use, if necessary.

• char8_t = Unix format paths (UTF-8). Input must be valid UTF-8. This is converted
C++-side to the native filesystem encoding at the point of use, if necessary.

• char16_t = Unix format paths (UTF-16). Input must be valid UTF-16. This is converted
C++-side to the native filesystem encoding at the point of use, if necessary.

• byte = Unique variable width binary number identifier. POSIX does not currently implement
a standard API for these kind of paths, but proprietary APIs exist for various filesystems and
hardware devices (e.g. ZFS, Samsung KV-SSD).

These are the path interpretation semantics applied to emitting path views by LLFIO on POSIX:

• Directory enumeration produces either the native filesystem encoding in char, or a unique
variable width binary number identifier in byte.

These are the path interpretation semantics applied to consuming path views by LLFIO on Mi-
crosoft Windows:

13

• char = Compatibility DOS format paths, narrow system encoding (program locale deter-
mined). Compatibility DOS format paths start with X:\, or no prefix at all. These call the
ANSI editions of Win32 APIs.

• wchar_t = Compatibility DOS format paths, wide system encoding (UTF-16). These call the
Unicode editions of Win32 APIs.

• char16_t = Compatibility DOS format paths in UTF-16. Input must be valid UTF-16. These
call the Unicode editions of the Win32 APIs.

• char8_t = Compatibility DOS format paths in UTF-8. Input must be valid UTF-8. This is
converted C++-side to UTF-16 at the point of use, and the Unicode editions of Win32 APIs
are called.

• char = Extended DOS format paths, narrow system encoding (program locale determined).
As per Win32 API documentation, extended DOS format paths are prefixed with \\?\ or
\\.\. These call the ANSI editions of Win32 APIs.

• wchar_t = Extended DOS format paths, wide system encoding (UTF-16). These call the
Unicode editions of Win32 APIs.

• char16_t = Extended DOS format paths in UTF-16. Input must be valid UTF-16. These
call the Unicode editions of the Win32 APIs.

• char8_t = Extended DOS format paths in UTF-8. Input must be valid UTF-8. This is
converted C++-side to UTF-16 at the point of use, and the Unicode editions of Win32 APIs
are called.

• char = NT format paths, narrow system encoding (program locale determined). This is a
LLFIO-only extension, NT format paths are prefixed with \!!\. Paths prefixed with this
never use the Win32 APIs, only the NT kernel APIs.

• wchar_t = NT format paths, wide system encoding (UTF-16).

• char16_t = NT format paths in UTF-16. Input must be valid UTF-16.

• char8_t = NT format paths, UTF-8. This is converted C++-side to UTF-16 at the point of
use.

• byte = Unique variable width binary number identifier (NTFS and ReFS permit a 128-bit
key-value lookup of inodes, this may be accelerated in hardware by suitable storage devices).

These are the path interpretation semantics applied to emitting path views by LLFIO on Microsoft
Windows:

• Directory enumeration produces either the native filesystem encoding in wchar_t, or a unique
variable width binary number identifier in byte.

14

5 Technical specifications

No Technical Specifications are involved in this proposal.

6 Frequently asked questions

6.1 Does this mean that all APIs consuming std::filesystem::path ought to now
consume std::filesystem::path_view instead?

Most of the time, perhaps almost always, yes. std::filesystem::path_view implicitly constructs
from explicitly encoded strings, paths and explicitly encoded string literals. Anywhere you are
currently consumg std::filesystem::path as a parameter, you can start using
std::filesystem::path_view instead if this proposal is approved. It would remain the case that
where a function is returning a new path, std::filesystem::path is the correct choice. So inputs
would be mostly path views, outputs would be paths.

Path views can represent more encodings of filesystem paths than std::filesystem::path can e.g.
unique variable with binary numbers.

This author has replaced paths with path views in an existing piece of complex path decomposition
and recomposition, and apart from a few minor source code changes to fix lifetime issues, the code
compiled and worked unchanged. Path views are mostly a drop-in replacement for paths, except
for when one is creating wholly new paths.

Incidentally, performance of that code improved by approximately twenty fold (20x).

7 Acknowledgements

My thanks to Nicol Bolas, Bengt Gustafsson and Billy O’Neal for their feedback upon this proposal.

8 References

[P0482] Tom Honermann,
char8_t: A type for UTF-8 characters and strings
https://wg21.link/P0482

[P0882] Yonggang Li
User-defined Literals for std::filesystem::path
https://wg21.link/P0882

[P1031] Douglas, Niall
Low level file i/o library
https://wg21.link/P1031

15

https://wg21.link/P0482
https://wg21.link/P0882
https://wg21.link/P1031

	Introduction
	Impact on the Standard
	Proposed Design
	pathviewcomponent
	pathview
	Example of use

	Design decisions, guidelines and rationale
	Fixed use of stack in struct c_str
	Path view consumer determines the path interpretation semantics

	Technical specifications
	Frequently asked questions
	Does this mean that all APIs consuming std::filesystem::path ought to now consume std::filesystem::path_view instead?

	Acknowledgements
	References

