
Array size deduction in new-expressions

Timur Doumler (papers@timur.audio)

Document #: P1009R2
Date: 2019-02-22
Project: Programming Language C++
Audience: Core Working Group

Abstract

In this paper we propose to fix a particular inconsistency in the initialization rules of C++
by allowing array size deduction in new-expressions. This aligns their behaviour with that of
initialization everywhere else in the language. Our proposed solution also creates consistency for
a parenthesized list of values, which P0960 allows to to be used for initializing an array.

1 Motivation
Bjarne Stroustrup pointed out the following inconsistency in the C++ language:

double a[]{1,2,3}; // this declaration is OK, ...
double* p = new double[]{1,2,3}; // ...but this one is ill-formed!

Jens Maurer provided the explanation why it doesn’t work: For a new-expression, the expression
inside the square brackets is currently mandatory according to the C++ grammar. When uniform
initialization was introduced for C++11, the rule about deducing the size of the array from the
number of initializers was never extended to the new-expression case. Presumably this was simply
overlooked. There is no fundamental reason why we cannot make this work.
Admittedly, deducing the array size in a new-expression is code that probably only very few people
would actually write. One could therefore argue that this is a problem not worth fixing.
However, when teaching C++ initialization rules, we observe that most people intuitively expect
uniform initialization in a new-expression to follow the same rules as uniform initialization everywhere
else in the language. This exception is very unfortunate and tends to upset and surprise people
when pointed out to them.
The existence of such exceptions is exactly the reason why C++ initalization rules are so notorious
for being complicated, and why most C++ developers struggle with them. There are just too many
non-obvious inconsistencies. We therefore propose to remove this particular one—not because this is
a problem that people would frequently run into (they don’t), but because fixing it is straightforward,
the fix is a pure extension that does not impact any other part of the standard, and it would make
initialization rules in C++ simpler, more uniform, and easier to teach.

1

mailto:papers@timur.audio

2 Solution
We propose to allow omitting the array bound in a new-expression, as long as the array size can be
deduced from the initializer list, in the same way it is already allowed in regular array declarations:

C++17 This proposal
double a[]{1,2,3}; // OK double a[]{1,2,3}; // OK
double* p = new double[]{1,2,3}; // Error double* p = new double[]{1,2,3}; // OK

A special case are arrays with no elements. While a declaration of an object of such type is ill-formed,
it is fine to allocate one in a new-expression:

int a[0]{}; // this declaration is ill-formed, ...
int* p = new int[0]{}; // ...but this one is OK!

This keeps consistency with C, where malloc(0) returns a (non-dereferenceable) pointer, and is
occasionally useful in C++, e.g. in templates where the array size is a non-type template parameter.
To be maximally consistent, we propose that an array size of 0 in a new-expression should be
deduced if the initializer consists of empty braces:

C++17 This proposal
double* p = new double[0]{}; // OK double* p = new double[0]{}; // OK
double* p = new double[]{}; // Error double* p = new double[]{}; // OK

Here, both versions (with or without the 0) would have the same effect. This way, array size
deduction in new-expressions behaves the exact same way for any array size that is allowed in a
new-expression.
Another variation of this inconsistency is an array initialized with a string literal. The proposed
wording fixes this case, too:

C++17 This proposal
char c[]{"Hello"}; // OK char c[]{"Hello"}; // OK
char* d = new char[]{"Hello"}; // Error char* d = new char[]{"Hello"}; // OK

3 Interaction with P0960
[P0960] introduces aggregate initialization with a parenthesized list of values, which includes arrays.
The proposed wording ensures consistency in this case, too:

P0960 P0960 + this proposal
double a[](1,2,3); // OK double a[](1,2,3); // OK
double* p = new double[](1,2,3); // Error double* p = new double[](1,2,3); // OK

4 Previous work
The issue discussed here was already mentioned in an earlier paper by Ville Voutilainen [P0965],
although that paper did not propose a technical solution for it. It also mentioned another inconsis-
tency dealing with pointers to pointers. It admitted that this other inconsistency “may be beyond
fixing” and would require modifying the grammar in what “is certainly a breaking change”. It is a
much rarer corner case and we do not consider it here.

2

5 Proposed wording
The reported issue is intended as a defect report with the proposed resolution as follows. The effect
of the wording changes should be applied in implementations of all previous versions of C++ where
they apply. The changes are relative to the C++ working paper [Smith2018].
Modify [expr.new] paragraph 1 as follows:

noptr-new-declarator :
[expressionopt] attribute-specifier-seqopt

noptr-new-declarator [constant-expression] attribute-specifier-seqopt

Modify [expr.new] paragraph 6 as follows:

Every constant-expression in a noptr-new-declarator shall be a converted constant ex-
pression of type std::size_t and shall evaluate to a strictly positive value. TIf the
expression in a noptr-new-declarator is present, it is implicitly converted to std::size_t.
[Example: Given the definition int n = 42, new float[n][5] is well-formed (because n
is the expression of a noptr-new-declarator), but new float[5][n] is ill-formed (because
n is not a constant expression). —end example]
If the type-id or new-type-id denotes an array type of unknown bound ([dcl.array]), the
new-initializer shall not be omitted; the allocated object is an array with n elements,
where n is determined from the number of initial elements supplied in the new-initializer
([dcl.init.aggr], [dcl.init.string]).

Document history

— R0, 2018-10-08: Initial version

— R1, 2018-11-26: Added discussion of no-elements case; revised wording; made proposal a DR;
added reference to P0965.

— R2, 2019-02-22: Added discussion of string literal case and P0960; revised wording.

Acknowledgements
Many thanks to Richard Smith and Tim Song for their help with the wording, and to JF Bastien
and Patrice Roy for their comments.

References

[P0960] Ville Voutilainen and Thomas Köppe. Allow initializing aggregates from a parenthesized
list of values. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0960r2.
html, 2019-01-21.

[P0965] Ville Voutilainen. Initializers of objects with automatic and dynamic storage duration have
funny inconsistencies. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/
p0965r0.html, 2018-02-12.

[Smith2018] Richard Smith. Working Draft, Standard for Programming Language C++. https:
//github.com/cplusplus/draft, 2019-02-22.

3

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0960r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0960r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0965r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0965r0.html
https://github.com/cplusplus/draft
https://github.com/cplusplus/draft

	1 Motivation
	2 Solution
	3 Interaction with P0960
	4 Previous work
	5 Proposed wording
	References

