
Document Number: P0917R3

Date: 2019-10-07

Reply-to: Matthias Kretz <m.kretz@gsi.de>

Audience: EWG-I

Target: C++23

Making operator?: overloadable

ABSTRACT

This paper explores user-defined overloads of operator?:.

CONTENTS

1 Introduction 1
2 Motivation 1
3 Exploration 5
4 Suggested Polls 10
5 Wording 10
6 Changelog 10
7 Straw Polls 11
A Bibliography 12

P0917R3 1 Introduction

1 INTRODUCTION

Most operators in C++ can be overloaded. The few exceptions are: ?:, ::, ., .*. For
the conditional operator, Stroustrup [3] writes: “There is no fundamental reason to
disallow overloading of ?:. I just didn’t see the need to introduce the special case of
overloading a ternary operator. Note that a function overloading expr1?expr2:expr3
would not be able to guarantee that only one of expr2 and expr3 was executed.” In
this paper I want to show a need for overloading the conditional operator.

It is important to consider std::common_type when discussing changes to the con-
ditional operator. common_type_t<T, U> basically is defined as decltype(false ? :
T() : U()). Consequently, if the conditional operator supports more types via user-
defined overloads, common_type would automatically support them as well.

A previous revision of this paper discussed how to enable deferred evaluation. But
since Dennett et al. [P0927R2] is trying to solve deferred evaluation in general, this
paper will instead rely on the facilities of [P0927R2].

2 MOTIVATION

2.1 design principles

Be General “Don’t restrict what is inherent. Don’t arbitrarily restrict a complete set
of uses. Avoid special cases and partial features.” [P0745R0]

C++ allows operator overloading for almost all operators. That operator?: can-
not be overloaded is an arbitrary restriction (esp. in the face of operator&&
and operator‖‖). More importantly, the conditional operator naturally general-
izes to a blend operation when applied element-wise (i.e. multiple booleans as
condition).

Be Consistent “Don’t make similar things different, including in spelling, behavior, or
capability. Don’t make different things appear similar when they have different
behavior or capability.”

Currently user-defined types that are interconvertible cannot be used with the
conditional operator and require a function instead. Interconvertible types are
often a bad idea, except when the goal is to model built-in integer types. I.e.
without an overloadable operator?: it is impossible to write user-defined types
that are a drop-in replacement of the built-in types.

Be orthogonal “Avoid arbitrary coupling. Let features be used freely in combination.”

1

P0917R3 2 Motivation

The built-in conditional operator only evaluates the expression chosen by the
predicate. Lazy evaluation is an orthogonal problem to solve and should not be
tied to a solution for overloading the conditional operator. It is needed just as
much for operator&& and operator|| as it would be needed for operator?:.
Whether adding the ability to overload operator?: should wait for lazy eval-
uation to become available is not about orthogonality but about hand-holding
our users1.

2.2 blend operations

The conditional operator is a perfect match for expressing blend operations generi-
cally. I.e. a function template using the conditional operator uses blending of objects
of user-defined types but can also use fundamental types, where blending means
boolean selection of scalar values. Consider simd<T, Abi> [N4808, §9], where a cer-
tain number (determined at compile time) of values of arithmetic type T are com-
bined to a single object. All operators act element-wise and concurrently. Thus, the
meaning of
template <class T> T abs(T x) {

return x < 0 ? -x : x;
}

intuitively translates from fundamental types to simd types: Element-wise application
of the conditional operator blends the elements of -x and x into a single simd object
according to the simd_mask object (x < 0). The alternative solution for simd blend
operations is to use a function, such as “inline-if”:
template <class T> T abs(T x) {

return iif(x < 0, -x, x);
}

An “inline-if” function is

• less intuitive, since the name is either long or it is cryptic, and the arguments
appear to be arbitrarily ordered (comma doesn’t convey semantics such as ?
and : do).

• harder to use in generic code: If T is a built-in type, the iif function will not be
found via ADL; consequently, user code requires return std::experimental::iif(x
< 0, -x, x) to be generic. This is annoying and easily forgotten since ADL
works fine for simd arguments.

1 Which is what coding guidelines are used for. With great power comes great responsibility.

2

P0917R3 2 Motivation

It is not possible (and not a good idea to extend the language in such a way, in my
opinion) to overload if statements and iteration statements for non-boolean condi-
tions. Thus, to support any “collection of bool”-like type in conditional expressions
using built-in syntax, the conditional operator is the only candidate.

Considering cases where generality of the syntax, i.e. extension from the built-in
case to user-defined types, is important, we see that all such use cases will have a
type for the condition that is not contextually convertible to bool because the user-
defined condition object stores multiple boolean states. Overloading the conditional
operator is thus most interesting for stating conditional evaluation of multiple data
sets without imposing an order and thus enabling parallelization.

before after

template <class T>
void abs(T x)

{
if constexpr (std::is_simd_v<T>)

{
where(x < 0, x) = -x;
return x;

}
else

return x < 0 ? -x : x;
}

template <class T>
void abs(T x)

{
return x < 0 ? -x : x;

}

Tony Table 1: generic abs function supporting simd

2.3 embedded domain specific languages

Embedded domain specific languages in C++ often redefine operators for user-defined
types to create a new language embedded into C++. Having the conditional operator
available makes C++ more versatile for such uses.

As existing practice consider Boost.YAP: “The main objective of Boost.YAP is to be
an easy-to-use and easy-to-understand library for using the expression template
programming technique.”2 YAP “defines a 3-parameter function if_else() that acts
as an analogue to the ternary operator (?:), since the ternary operator is not user-
overloadable.”3

2 https://boostorg.github.io/yap/doc/html/boost_yap/rationale.html
3 https://boostorg.github.io/yap/doc/html/BOOST_YAP_USER_EX_idm15635.html

3

https://boostorg.github.io/yap/doc/html/boost_yap/rationale.html
https://boostorg.github.io/yap/doc/html/BOOST_YAP_USER_EX_idm15635.html

P0917R3 2 Motivation

2.4 user-defined numeric types

Any library-based numeric type may have a need for overloading operator?: if
the type carries information about the value or even modifies the value (e.g. for
std::chrono::duration). Most of those types specialize std::common_type4. Exam-
ples:

• std::chrono::duration<Rep, Period>

• std::chrono::time_point<Clock, Duration>

• fractional<Numerator, Denominator> from [P1050R0]

• fixed_point<Rep, Exponent, Radix> from [P0037R5]

• bounded::integer<minimum, maximum> from [2]

Consider the bounded::integer example (cf. [2]):
1 bounded::integer<1, 100> const a = f();
2 bounded::integer<-3, 7> const b = g();
3 bounded::integer<-2, 107> c = a + b;
4 bounded::integer<-3, 100> d = some_condition ? a : b;

Line 3 is what the bounded::integer library can currently do for you. However,
line 4 is currently not possible since it would require more control by the library over
the types involved (arguments and result) with the conditional operator.

Any design that wants to allow different types on the second and third argument
(without implicit conversions), and determine a return type from them, requires an
overloadable conditional operator. Note that user-defined numeric types want a sig-
nature such as operator?:(std::Boolean, T1, T2) in most cases. I.e. the idea to
only allow non-bool conditions on operator?: overloads breaks this use case. (I men-
tioned the idea in the previous revisions and it was also suggested in EWGI discus-
sion).

2.5 existing practice

GCC implements support for the conditional operator to allowing blending its vector
builtins5. OpenCL uses the conditional operator for blending operations [1]. Allow-
ing overloads of operator?: in C++ would enable users and std::simd to imple-
ment blend semantics with the same syntax and semantics as provided by GCC and
OpenCL.

4 cf. https://codesearch.isocpp.org/cgi- bin/cgi_ppsearch?q=struct+common_type%3C&search=
Search

5 https://gcc.gnu.org/onlinedocs/gcc/Vector- Extensions.html

4

https://codesearch.isocpp.org/cgi-bin/cgi_ppsearch?q=struct+common_type%3C&search=Search
https://codesearch.isocpp.org/cgi-bin/cgi_ppsearch?q=struct+common_type%3C&search=Search
https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html

P0917R3 3 Exploration

before after

bounded::integer<1, 100> const a = f();
bounded::integer<-3, 7> const b = g();
auto c = BOUNDED_CONDITIONAL(

some_condition, a, b);

bounded::integer<1, 100> const a = f();
bounded::integer<-3, 7> const b = g();
auto c = some_condition ? a : b;

Tony Table 2: bounded::integer now and with overloadable operator?:

before after

template<class T, class U>
void f(bool cond, T a, U b)

{
if constexpr (

is_bounded_integer<T>::value ||
is_bounded_integer<U>::value)

g(BOUNDED_CONDITIONAL(
some_condition, a, b));

else
g(cond ? a : b);

}

template<class T, class U>
void f(bool cond, T a, U b)

{
g(cond ? a : b);

}

Tony Table 3: supporting bounded::integer in a generic function

3 EXPLORATION

3.1 can a user-defined conditional operator change existing code?

The conditional operator already works in many situations where user-defined types
are used. A few examples are shown in Figure 1.

Should the user be able to define a conditional operator that takes precedence
over the built-in operator? Of course, to be consistent with all other operator over-
loads, operator?: overloads will require at least one user-defined type in their sig-
nature. The examples in Figure 1 seem to motivate maximal freedom in overloading
operator?:; but let’s not use implementation divergence for motivation.

If we allow user-defined operator?: to be a better match than built-in operator?:,
we open the door to situations where the return type (and value) of the same
conditional operator is different at different places in the TU (such as in https:
//godbolt.org/z/xMMbaE), as is the case for all other operators already. However,

5

https://godbolt.org/z/xMMbaE
https://godbolt.org/z/xMMbaE

P0917R3 3 Exploration

// most common usage of ?: with UDTs:
struct Point { float x, y, z; };
static_assert(is_same_v<Point, decltype(bool() ? Point() : Point())>);

// less common:
struct A { explicit operator bool(); };
struct B { operator float(); };
struct C { operator float(); };
using X = decltype(A() ? B() : C()); // X = float (GCC, Clang), double (ICC),

// ill-formed (MSVC)
struct D {

operator B();
operator float();

};
using Y = decltype(A() ? B() : D()); // Y = B
struct E;
struct F { operator E(); };
struct E { operator F(); };
using Z = decltype(A() ? F() : E()); // Z = F (MSVC), ill-formed (GCC, Clang, ICC)

Figure 1: Examples of the conditional operator with UDTs

common_type behaves differently, since it can only be specialized once. Consequently,
if a user-defined conditional operator were allowed to overload combinations that the
built-in operator can handle, one could construct examples where common_type<A,
B> and decltype(false ? A() : B()) agree in one part of the TU and disagree
in the other part.6 Note that such pitfalls are not novel. All operator (and function)
overloads can already be used to construct such inconsistencies (e.g. Figure 2).

Nevertheless, because of the connection between common_type and the condi-
tional operator, I believe we should consider the possibility of disregarding user-
defined operators whenever the built-in operator is a candidate. It would be nicer to
make the declaration of such operator overloads ill-formed. But I believe this is im-
possible since it appears to be a similar problem as definition checking for concepts.
We could, however, consider to make such operator overload declarations ill-formed
NDR.

That said, I believe such a constraint on operator?: is complicating the language
for little gain andmight even inhibit valid use cases. I would prefer tomake operator?:
just as useful and dangerous as all other overloads. Suggested poll: “operator?:
should have special rules to avoid overloading the built-in operator”.

6 using X = common_type_t<A, B>; /*overload operator?:(bool, A, B)*/ static_assert(is_-
same_v<common_type_t<A, B>, decltype(false ? A() : B())>);

6

P0917R3 3 Exploration

struct A { operator int() const; };
struct B { operator float() const; };

template <class A, class B> struct my_common_type {
using type = decltype(A() + B());

};
template <class A, class B>
using my_common_type_t = typename my_common_type<A, B>::type;

using X = my_common_type_t<A, B>;
static_assert(std::is_same_v<X, my_common_type_t<A, B>>);
static_assert(std::is_same_v<X, decltype(A() + B())>);

short operator+(A, B);
static_assert(std::is_same_v<X, my_common_type_t<A, B>>);
static_assert(std::is_same_v<X, decltype(A() + B())>); // fails

Figure 2: A pitfall of overloading (cf. https://godbolt.org/z/iqbj1a)

3.2 should common_type ignore user-defined conditional operators?

Currently, std::common_type is specified in terms of the decltype of the conditional
operator. Consequently, if the common_type specification is not changed, the dec-
laration of user-defined conditional operators affects the result of common_type. I
strongly believe this is the preferred behavior. Either common_type specializations
should extend operator?: or operator?: overloads should extend common_type. The
inconsistency we currently have from user-defined specializations of common_type is
suboptimal (i.e. a common type is defined, but the conditional operator still is not
usable). The DRY (“don’t repeat yourself”) principle implies we should enable a way
for users to extend operator?: and common_type with a single definition. The more
flexible and natural customization point is operator?:.

3.3 defaulted conditional operator overload

In most scalar cases, the implementation of the conditional operator is trivial (i.e.
return either b or c, depending on a for a ? b : c). The interesting choice when
overloading the conditional operator is the return type. Thus defaulting the operator
appears like a logic step.

When the implementation is defaulted, it is simple to make these operators im-
plement lazy evaluation. Consider:
R operator?:(bool a, B b, C c) = default;
...
R x = a ? b : c;

7

https://godbolt.org/z/iqbj1a

P0917R3 3 Exploration

The definition of this operator could mean the equivalent of
R x = a ? static_cast<R>(b) : static_cast<R>(c);

and thus implement lazy evaluation. Noting that the built-in conditional operator
accepts arguments that are “contextually convertible to bool ”, we see that using
bool in the operator?: defintion above is not the perfect choice. We would need to
use a concept such as instead of bool:
template<class B>

concept contextual_boolean = std::is_constructible_v<bool, B>;

Alternatively, a defaulted operator?: could omit the first argument if it should accept
anything contextually convertible to bool:
R operator?:(B b, C c) = default;
...
R x = a ? b : c;

A non-defaulted operator?: would behave like any other operator overload and
need an orthogonal mechanism for lazy evaluation.

3.4 synthesizing the conditional operator from common_type specializations

An obvious idea from the above discussion is to simply synthesize a conditional op-
erator when common_type is defined, but ?: is not usable. Basically a ? b : c gets
turned into a ? static_cast<std::common_type_t<decltype(b), decltype(c)>>(b)
: static_cast<std::common_type_t<decltype(b), decltype(c)>>(c).

Note that this would be an incomplete solution as it would not generalize to non-
boolean cases / blend operations. Also, implementing expression templates via this
solution should be possible but be awkward: The common type of two expressions
would have to be defined as a “conditional expression” on two operands.

3.5 deferred evaluation

One of the expected features of the conditional operator is deferred evaluation of
the expressions after the question mark. However, deferred evaluation is an orthog-
onal problem, and best handled via an independent proposal such as [P0927R2]. A
desire to first solve deferred evaluation before deciding on overloading the condi-
tional operator was voiced a few times. I strongly believe operator?: overloading is
worthwhile even if [P0927R2] (or a different facility solving that same problem) does
not move forward. This is because a major part of the motivation for operator?:
overloading is for blend operations. Blend operations cannot make use of deferred
evaluation and thus can benefit from the simplest way of operator?: overloading.

8

P0917R3 3 Exploration

Consider a conceivable implementation of the conditional operator for simd<T,
Abi> as shown in Figure 3. If this code is inlined7, the compiler will know how to

template <class T, class Abi>
simd<T, Abi> operator?:(simd_mask<T, Abi> mask, simd<T, Abi> a, simd<T, Abi> b) {

if (all_of(mask)) [[unlikely]] {
return a;

} else if (none_of(mask)) [[unlikely]] {
return b;

}
where(mask, b) = a;
return b;

}

Figure 3: Simple operator?: for simd<T, Abi>

improve the calling code without the need for explicit deferred evaluation of a and b.
Only if the expressions in the second and third argument to the conditional operator
have side effects, is the difference important.8

Pure numerical code (thus without side effects) can also optimize a simple con-
ditional operator that does not make use of deferred evaluation. For expression
templates, operator?: overloads can and have to implement deferred evaluation
themselves anyway.

3.6 partial feature until lazy evaluation lands

There has been concern that we should not add another feature to the language
that would get an immediate entry into coding guidelines forbidding its use in most
situations. The concern is that, similar to operator&& and operator||, the conditional
operator should not be used because it does not implement the same lazy evaluation
semantics as the builtt-in operators do. Those guidelines are correct for the great
majority of cases, except for the few cases where lazy evaluation is irrelevant and it
is okay to overload && and || even without lazy evaluation (examples are valarray
and simd). So the language should rather be restricted to avoid errors from users
that do not follow guidelines.

As a committee we could follow that reasoning and still provide an overloadable
conditional operator. It would have to be restricted to non-boolean conditions, i.e.
!std::is_constructible_v<bool, T>.

7 A reasonable simd implementation forces inlining for most functions.
8 Side effects in those expressions are likely bugs anyway (printf debugging maybe being an exception)

9

P0917R3 4 Suggested Polls

This would enable the blend use cases but leave many valid use cases (expres-
sion templates, bounded::integer) on the floor. It would be possible to extend
operator?: to boolean conditions once lazy evaluation is added to the language.

4 SUGGESTED POLLS

Poll: Pursue defaulted operator?:

SF F N A SA

Poll: Pursue 2-argument defaulted operator?:

SF F N A SA

Poll: Pursue 3-argument defaulted operator?: turning bool into contextually con-
vertible to bool
SF F N A SA

Poll: Make operator?: overloadable but require non-boolean condition until lazy eval
lands
SF F N A SA

Poll: Unrestricted operator?: overloads, trusting our users to use it responsibly
SF F N A SA

5 WORDING

TBD.

6 CHANGELOG

6.1 changes from revision 0

Previous revision: [P0917R0]

• Added bounded::integer motivation and example.

• Added a reference to [P0927R0]; making a stronger case for the simple choice.

10

P0917R3 7 Straw Polls

6.2 changes from revision 1

Previous revision: [P0917R1]

• Discuss common_type.

• Discuss overloading operator?:(bool, ...).

• Mention chrono::duration and other numeric types as motivation.

6.3 changes from revision 2

Previous revision: [P0917R2]

• Add Tony tables.

• Explore defaulting operator?:.

• Discuss synthesizing operator?: from common_type.

• Define a contextual_boolean concept, that most overloads should use instead
of a naïve bool parameter.

• Try to be clearer about generality, consistency, and orthogonality of this pro-
posal.

• Add boost::yap as another existing library that is missing the ability to over-
load ?:.

7 STRAW POLLS

7.1 lewg at rapperswil 2018

Poll: Temperature of the room: LEWG supports overload of ?:
SF F N A SA

2 5 1 1 2
Poll: LEWG supports overload, assuming lazy eval is available
SF F N A SA

4 5 2 ? ?

11

P0917R3 A Bibliography

7.2 ewgi at san diego 2018

Poll: Should we commit additional committee time to overloading operator?: knowing
it will leave leess time for other work?
SF F N A SA

1 3 6 2 0

7.3 ewgi in cologne 2019

Poll: This proposal should explore defaulted operator?: only, instead of fully-customizable?
SF F N A SA

0 0 5 5 3
Poll: Lazy operators should be standardized before overloading operator?: can be
standardized.
SF F N A SA

2 3 5 2 1
Poll: Continue spending committee time on this versus other proposals, given that
time is limited?
SF F N A SA

1 9 5 0 0

A BIBLIOGRAPHY

[P0927R0] James Dennett and Geoff Romer. P0927R0: Towards A (Lazy) Forwarding
Mechanism for C++. ISO/IEC C++ Standards Committee Paper. 2018. url:
https://wg21.link/p0927r0.

[P0927R2] James Dennett and Geoff Romer. P0927R2: Towards A (Lazy) Forwarding
Mechanism for C++. ISO/IEC C++ Standards Committee Paper. 2018. url:
https://wg21.link/p0927r2.

[N4808] Jared Hoberock, ed. Working Draft, C++ Extensions for Parallelism Version
2. ISO/IEC JTC1/SC22/WG21, 2019. url: https://wg21.link/n4808.

[1] Khronos OpenCL Working Group. The OpenCL Specification. 2011. url:
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf.

[P0917R0] Matthias Kretz. P0917R0: Making operator?: overloadable. ISO/IEC C++
Standards Committee Paper. 2018. url: https://wg21.link/p0917r0.

12

https://wg21.link/p0927r0
https://wg21.link/p0927r2
https://wg21.link/n4808
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
https://wg21.link/p0917r0

P0917R3 A Bibliography

[P0917R1] Matthias Kretz. P0917R1: Making operator?: overloadable. ISO/IEC C++ Stan-
dards Committee Paper. 2018. url: https://wg21.link/p0917r1.

[P0917R2] Matthias Kretz. P0917R2: Making operator?: overloadable. ISO/IEC C++
Standards Committee Paper. 2019. url: https://wg21.link/p0917r2.

[P0037R5] John McFarlane. P0037R5: Fixed-Point Real Numbers. ISO/IEC C++ Stan-
dards Committee Paper. 2018. url: https://wg21.link/p0037R5.

[P1050R0] John McFarlane. P1050R0: Fractional Numeric Type. ISO/IEC C++ Standards
Committee Paper. 2018. url: https://wg21.link/p1050r0.

[2] David Stone. davidstone / bounded_integer — Bitbucket. url: https://
bitbucket.org/davidstone/bounded_integer (visited on 02/26/2018).

[3] Bjarne Stroustrup. Stroustrup: C++ Style and Technique FAQ. url: http :
/ / www . stroustrup . com / bs _ faq2 . html # overload - dot (visited on
01/31/2018).

[P0745R0] Herb Sutter. P0745R0: Concepts in-place syntax syntax. ISO/IEC C++ Stan-
dards Committee Paper. 2018. url: https://wg21.link/p0745r0.

13

https://wg21.link/p0917r1
https://wg21.link/p0917r2
https://wg21.link/p0037R5
https://wg21.link/p1050r0
https://bitbucket.org/davidstone/bounded_integer
https://bitbucket.org/davidstone/bounded_integer
http://www.stroustrup.com/bs_faq2.html#overload-dot
http://www.stroustrup.com/bs_faq2.html#overload-dot
https://wg21.link/p0745r0

	1 Introduction
	2 Motivation
	2.1 Design Principles
	2.2 Blend Operations
	2.3 Embedded Domain Specific Languages
	2.4 User-defined numeric types
	2.5 Existing Practice

	3 Exploration
	3.1 Can a user-defined conditional operator change existing code?
	3.2 Should common_type ignore user-defined conditional operators?
	3.3 Defaulted conditional operator overload
	3.4 Synthesizing the conditional operator from common_type specializations
	3.5 Deferred evaluation
	3.6 Partial feature until lazy evaluation lands

	4 Suggested Polls
	5 Wording
	6 Changelog
	6.1 Changes from revision 0
	6.2 Changes from revision 1
	6.3 Changes from revision 2

	7 Straw Polls
	7.1 LEWG at Rapperswil 2018
	7.2 EWGI at San Diego 2018
	7.3 EWGI in Cologne 2019

	A Bibliography

