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Math Constants 

 

0. Abstract 
 

There is a consensus in a C++ standardization community that it would be beneficial to add to the 
standard library definitions for the most commonly used mathematical constants. Chapters 2 and 3 
introduce the problem and describe prior standardization efforts. The core proposal is in chapter 4, where 
the abovementioned questions are discussed and answered. The chapter 5 presents decisions made in 
chapter 4 as a list of modifications to the standard document.  

 

1. Changelog 
 

Changes from R6: 

• In chapter 5, table numbers were replaced with stable names. 

• In subchapter 4.1, last paragraph was reworded. 

• In subchapter 5.2, float and long double constant names were removed. 

• In subchapter 5.2, note 2 inserted to allow specializations for program-defined types. 

• In chapter 6, a link added to a possible implementation of the <math> header. 
 

Changes from R5: 

• The proposed FloatingPoint concept was moved to be with integral concepts and their section 
was renamed from concepts.integral to concepts.arithmetic. 

• A new <math> header was added to the table 19 in the Headers [headers] section. 

• Semicolons added after all = unspecified and = see below 

• The <math> header now has std namespace but no longer includes <type_traits> 

• The remark in subchapter 5.4 was reworded and split into 2 paragraphs. 

 

Changes from R4: 

• Audience changed to LWG 

• Abstract reworded to reflect the decisions made by LEWG in San Diego. 

• Math constants placed into a new nested namespace std::math.  

• Subchapters 4.3 “Definitions” and 4.4. ”A “Hello world” program for math constants” removed. 

• In chapter 5,  
- new FloatingPoint concept introduced, 
- new [math.constants] subclause introduced, 
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- primary variable templates are ill-formed; implementation specializes them for floating point 
types, 

- 1Requires removed,  

-  1 Remarks addresses [namespace.std]/3 by explicitly allowing program template 

specializations. 

• Chapter 6 “Design Alternatives” removed. 
 

Changes from R3: 

• Several wording changes 

• The math constants are moved into a new proposed header <math> 

• A spelling error in m_denominator is corrected 

• Variable templates now end with _v  

• The section 6 added on design decisions to be voted on by LEWG. The abstract is updated 
accordingly. 

• Acknowledgements updated 

 

Changes from R2: 

• The variable templates are now named without an underscore  

• All definitions are done inside std instead of nested namespaces 

• New constructor added to the floating_t class 

• An example added of how to create an instance of the floating_t class with higher than double 
precision 

• A possible implementation of std::piv is suggested 

• Abstract added 

• Chapter 5 is merged as a sub-chapter into chapter 4. 

 

Changes from R1: 

• Several typos fixed 

• A better URL for Boost math constant 

• Design goal 4) is replaced 

• Radian, Catalan’s, Apéry’s and Glaisher’s constants are no longer proposed 

• Motivation behind Euler-Mascheroni and golden ratio constants added  

• The inverse constants now have underscores in their names 

• A link to the list of Wolfram constants removed as no longer relevant 
 

Changes from R0: 

• Added changelog, header and footer 

• Several readability improvements 

• Chapters are numbered 

• The 4th and 6th chapters subdivided into subchapters 

• Design goals stated 

• A different set of constants proposed 

• Naming conventions are now different 

• A drop-in replacement for POSIX constants no longer proposed 

• All definitions are in the new math_constants namespace  
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• Variable template types are inline 

• Added new implementation requirements 

• float and double typed constants proposed 

• Boost constants described in the chapter 3. 

• The 5th and 6th chapters reworked according to the abovementioned changes 

• Links to the lists of Wolfram and Boosts constants added to the 7th chapter 

• The types of constants should be directly or indirectly constexpr constructible from a floating-
point type. 

• Examples added of user-defined types suitable for instantiation of math constants 
 

2. Introduction  
 

C++ inherited from C a rich library of mathematical functions which continues to grow with every release. 
Amid all this abundance, there is a strange gap: none of the major mathematical constants is defined in 
the standard. This proposal is aimed to rectify this omission. 

3. Motivation 

Mathematical constants such as π and e frequently appear in mathematical algorithms. A software 
engineer can easily define them, but from their perspective, this is akin to making a reservation at a 
restaurant and being asked to bring their own salt. The C++ implementers appreciate this need and 
attempt to fulfil it with non-standard extensions.  

 

The IEEE Standard 1003.1™-2008 a.k.a POSIX.1-2008 stipulates that on all systems supporting the X/Open 
System Interface Extension, “the <math.h> header shall define the following symbolic constants. The 
values shall have type double and shall be accurate to at least the precision of the double type.” 

 

M_E       - value of e 

M_LOG2E   - value of log2e 

M_LOG10E  - value of log10e 

M_LN2     - value of ln2 

M_LN10    - value of ln10 

M_PI      - value of π 

M_PI_2    - value of  
π

2
 

M_PI_4    - value of 
π

4
 

M_1_PI    - value of 
1

π
 

M_2_PI    - value of 
2

π
 

M_2_SQRTPI- value of  
2

√π
 

M_SQRT2   - value of √2 

M_SQRT1_2 value of 
√2

2
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POSIX.1-2008 explicitly states that these constants are outside of the ISO C standard and should be hidden 
behind an appropriate feature test macro. On some POSIX-compliant systems, this macro is defined as 
_USE_MATH_DEFINES, which led to a common assumption that defining this macro prior to the inclusion 
of math.h makes these constants accessible. In reality, this is true only in the following scenario:  

1) The implementation defines these constants, and 
2) It uses _USE_MATH_DEFINES as a feature test macro, and 
3) This macro is defined prior to the first inclusion of math.h or any header file that directly or 

indirectly includes math.h. 

These makes the availability of these constants extremely fragile when the code base is ported from one 
implementation to another or to a newer version of the same implementation. In fact, something as 
benign as including a new header file may cause them to disappear. 

 

The OpenCL standard by the Kronos Group offers the same set of preprocessor macros in three variants: 
with a suffix _H, with a suffix _F and without a suffix, to be used in fp16, fp32 and fp64 calculations 
respectively. The first and the last sets are macro-protected. It also defines in the cl namespace the 
following variable templates:  
 
e_v, log2e_v, log10e_v, ln2_v, ln10_v , pi_v, pi_2_v, pi_4_v, one_pi_v, two_pi_v, two_sqrtpi_v, sqrt2_v, 
sqrt1_2_v 
 
as well as their instantiations based on a variety of floating-point types and abovementioned macros. An 
OpenCL developer can therefore utilize a value of cl::pi_v<float>; they can also access cl::pi_v<double>, 
but only if the cl_khr_fp64 macro is defined. 
 

The GNU C++ library offers an alternative approach. It includes an implementation-specific file ext\cmath 
that defines in the __gnu_cxx namespace the templated definitions of the following constants: 

 

__pi,__pi_half,__pi_third,__pi_quarter,__root_pi_div_2,__one_div_pi,__two_div_pi,__two_div_root_pi
,__e,__one_div_e, __log2_e, __log10_e, __ln_2, __ln_3, __ln_10, __gamma_e, __phi, __root_2, 
__root_3,__root_5, __root_7, __one_div_root_2 
 
The access to these constants is quite awkward.  For example, to use a double value of π, a programmer 
would have to write __gnu_cxx::__math_constants::__pi<double>.  
 
The Boost library has its own extensive set of constants, comprised of the following subsets:  

- rational fractions (including 
1

2
 ) 

- functions of 2 and 10  
- functions of π, e, ϕ (golden ratio) and Euler-Mascheroni γ constant  
- trigonometric constants 
- values of Riemann ζ (zeta) function 
- statistical constants (various values of skewness and kurtosis) 
- Catalan’s, Glaisher’s and Khinchin’s constants 

 

Components of their names are subdivided by an underscore, for example: one_div_root_pi. Boost 
provides their definitions for floating-point types in the following namespaces: 

boost::math::constants::float_constants 

boost::math::constants::double_constants  



P0631R7 Math Constants   2019-05-24 

5 
 

boost::math::constants::long_double_constants 

 

For user-defined types, Boost constants are accessed through a function call, for example: 

  boost::math::constants::pi<MyFPType>(); 

 

All these efforts, although helpful, clearly indicate the need for standard C++ to provide a set of math 
constants that would be both easy to use and appropriately accurate.  

 

4. Design considerations and proposed definitions 

4.0. Design goals. 

1) The user should be able to easily replace all POSIX constants with standard C++ constants. 
2) The constants should be available for all floating-point types without type conversion and with 

maximum precision of their respective types. 
3) It should be possible to easily create a set of values of basic trigonometric functions of common 

angles, also with their maximum precision.  
4) The constants should provide tangible benefits for C++ users interested in numerical analysis. 
5) It should be possible to instantiate them for user defined types. 

 

4.1. The set of constants and their names 

To achieve the design goals 1), 3) and 4) we need to provide the following three groups of constants: 

Group 1: 
 

e    - value of e                
log2e    - value of log2e         
log10e    - value of log10e  
ln2    - value of ln2  
ln10    - value of ln10  
pi    - value of π   

inv_pi    - value of 
1

𝜋
   

inv_sqrtpi - value of  
1

√π
     

sqrt2   - value of √2 
 

Group 2:  

       sqrt3    - value of √3 

 inv_sqrt3  - value of 
1

√3
     

Group 3: 

egamma - value of Euler-Mascheroni γ constant 

phi    - value of golden ratio constant ϕ = (1+√5)/2   
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The group 1 constants will help us to achieve the design goals 1) and 4), while the group 2 will do the 
same for the goals 2) and 4). Although the members of group 3 are used less frequently, they are still 
helpful for the design goal 4).  For example, the Euler-Mascheroni constant γ appears in the formula for 
a Bessel function of a second kind of order v (source: 
www.mhtlab.uwaterloo.ca/courses/me755/web_chap4.pdf ): 

 

With the addition of the Euler-Mascheroni constant, it will become possible to numerically calculate the 
value of Yv using only the constants presented in this proposal and the C++ 17 standard functions. As to 
the golden ratio ϕ, besides its traditional design applications, it is also used in the golden-section search, 
a method of finding a function extremum, see https://en.wikipedia.org/wiki/Golden-section_search.  

Virtually all existing implementations map floating-point types onto some subset of ISO/IEC/IEEE 60559 
types binary32, binary64 and binary128. These types are stored internally as a combination of a sign bit, 
a binary exponent and a binary normalized significand. If a ratio of two floating-point numbers of the 
same type is an exact power of 2 (within a certain limit), their significands will be identical. Therefore, in 
order to achieve the design goal 1), we don’t have to provide replacements for both M_PI and M_PI_2 
and M_PI_4. The user will be able to divide the M_PI replacement by 2 and by 4 and achieve the goals 2) 
and 3). 

4.2. Where to place the definitions? 

None of the existing C++ headers would be ideal to define math constants. The <cmath> header is 
meant for functionality that is either already in the C standard or could be introduced there at a later 
date. The proposed definitions however are based on variable templates and therefore are not C 
compatible. The header <numeric>, like the rest of the C++ algorithm library, is dedicated to operations 
on containers and other sequences (see 23.1.1); math constants would not be a good fit there either. 
The new <math> header would give us flexibility to add mathematical functionality regardless of the 
dynamics of C standardization.  
 
If we are to place math constants directly into std, this could lead to potential name collisions. For 
example, the following code fragment: 
 
using namespace std; 
constexpr double e = 2.71828; 
constexpr double esqr = e*e; 

 
will cease to be well-formed if preceded by #include <math>.  We therefore suggest to introduce a new 
nested namespace std::math that will contain math constants and potentially other future numeric APIs. 

 

http://www.mhtlab.uwaterloo.ca/courses/me755/web_chap4.pdf
https://en.wikipedia.org/wiki/Golden-section_search
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4.3. Access patterns 

Because the standard won’t provide a drop-in replacement for POSIX/OpenCL/GNU constants, it will be 
up to the user how, or even whether, to transition to standardized constants.  Some motivated users 
may do this via a global search-and-replace. It is likely however that many C++ projects will have the 
standard constants introduced alongside with the extant POSIX or user-defined constants. This may 
cause readability problems as well as subtle computational issues. For example, let’s consider the 
following code fragment: 
 
#define _USE_MATH_DEFINES 
#include "math.h" 
 
template<typename T> constexpr T pi =3.14159265358979323846L; 
 

constexpr long double MY_OLD_PI = M_PI; //has been here for 10+ years 
constexpr long double MY_NEW_PI = pi<long double>; 
 
static_assert(MY_OLD_PI == MY_NEW_PI, "OMG!"); 

 
It compiles on Windows, where long double is 64-bit, but fails on Linux, where it is 128-bit. The users 
that need to support 128-bit long double will have to carefully assess the risk of having slightly different 
values of math constants in the same project. 
 
If an existing codebase already has user-defined math constants, their definitions can easily be updated 
with standard constants, for example: 
 
const double PI = std::math::pi; 
  
In a more “greenfield” situation, where math constants are just being introduced, they can be imported 
into a global scope by the using directive, for example: 
 
using std::math::pi; 
 

If the user decides that in their particular domain, math constants should always have a specific type, 
they are welcome to redefine them based upon the appropriate standard constants. For example, the 
following definition will entail that pi is thought to be float: 
 
constexpr float pi = std::math::pi<float>; 

 

5. Proposed changes in the standard 
 

5.0. “Headers” [headers] 

In the table [tab:cpp.library.headers], a new <math> header needs to be added.  

5.1. “Header <concepts> synopsis” [concepts.syn] 

The comment  
 

  // [concepts.integral], integral concepts 

http://eel.is/c++draft/concepts.integral
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should be replaced with  
 

  // [concepts.arithmetic], arithmetic concepts 
 

After the line  
 

   concept UnsignedIntegral = see below; 

 
the following needs to be inserted: 
 

  template<class T> 

    concept FloatingPoint = see below; 

 

5.2. “Language-related concepts” [concepts.lang]   

The section Integral concepts [concepts.integral] is renamed to Arithmetic concepts [concepts. 

arithmetic]. After the line: 

concept UnsignedIntegral = Integral<T> && !SignedIntegral<T>; 

 
the following needs to be inserted: 
template<class T>  

  concept FloatingPoint = is_floating_point_v<T>; 

 

5.3. “General” [numerics.general] 

2 should be updated as follows:  
 
2 The following subclauses describe components for complex number types, random number generation, numeric 
(n-at-a-time) arrays, generalized numeric algorithms and mathematical constants and functions for floating-point 
types, as summarized in Table [tab:numerics.lib.summary]. 

 
In the table [tab:numerics.lib.summary], a new subclause should be added: 
 

[math.constants] Mathematical constants   <math>     
 
 

5.4. New subclause [math.constants] 

 
After [c.math] “Mathematical functions for floating point types”, a new subclause [math.constants] 
should be added as follows: 
 
 [math.constants]  Mathematical constants [math.constants] 
 
 [math.syn] Header <math> synopsis [math.syn] 
 

http://eel.is/c++draft/concepts.integral
http://eel.is/c++draft/c.math
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namespace std { 
 
namespace math {       
 
template<typename T > inline constexpr T e_v          = unspecified; 
template<typename T > inline constexpr T log2e_v      = unspecified; 
template<typename T > inline constexpr T log10e_v     = unspecified; 
template<typename T > inline constexpr T pi_v         = unspecified; 
template<typename T > inline constexpr T inv_pi_v     = unspecified; 
template<typename T > inline constexpr T inv_sqrtpi_v = unspecified; 
template<typename T > inline constexpr T ln2_v        = unspecified; 
template<typename T > inline constexpr T ln10_v       = unspecified; 
template<typename T > inline constexpr T sqrt2_v      = unspecified; 
template<typename T > inline constexpr T sqrt3_v      = unspecified; 
template<typename T > inline constexpr T inv_sqrt3_v  = unspecified; 
template<typename T > inline constexpr T egamma_v     = unspecified; 
template<typename T > inline constexpr T phi_v        = unspecified; 
 
template<FloatingPoint T > inline constexpr T e_v<T>          = see below; 
template<FloatingPoint T > inline constexpr T log2e_v<T>      = see below; 
template<FloatingPoint T > inline constexpr T log10e_v<T>     = see below; 
template<FloatingPoint T > inline constexpr T pi_v<T>         = see below; 
template<FloatingPoint T > inline constexpr T inv_pi_v<T>     = see below; 
template<FloatingPoint T > inline constexpr T inv_sqrtpi_v<T> = see below; 
template<FloatingPoint T > inline constexpr T ln2_v<T>        = see below; 
template<FloatingPoint T > inline constexpr T ln10_v<T>       = see below; 
template<FloatingPoint T > inline constexpr T sqrt2_v<T>      = see below; 
template<FloatingPoint T > inline constexpr T sqrt3_v<T>      = see below; 
template<FloatingPoint T > inline constexpr T inv_sqrt3_v<T>  = see below; 
template<FloatingPoint T > inline constexpr T egamma_v<T>     = see below; 
template<FloatingPoint T > inline constexpr T phi_v<T>        = see below; 
 
inline constexpr double e = e_v<double>; 
inline constexpr double log2e = log2e_v<double>; 
inline constexpr double log10e = log10e_v<double>; 
inline constexpr double pi = pi_v<double>; 
inline constexpr double inv_pi = inv_pi_v<double>; 
inline constexpr double inv_sqrtpi = inv_sqrtpi_v<double>; 
inline constexpr double ln2 = ln2_v<double>; 
inline constexpr double ln10 = ln10_v<double>; 
inline constexpr double sqrt2 = sqrt2_v<double>; 
inline constexpr double sqrt3 = sqrt3_v<double>; 
inline constexpr double inv_sqrt3 = inv_sqrt3_v<double>; 
inline constexpr double egamma = egamma_v<double>; 
inline constexpr double phi = phi_v<double>; 
 
} 
 
} 

 
1 The library-defined partial specializations of math constant variable templates are initialized 

with implementation-specific values of e, log2e, log10e, π, 
1

π
, 

1

√π
, ln2, ln10, √2  ,  √3  , 

1

√3
, Euler-

Mascheroni γ constant and golden ratio ϕ constant (
1+√5

2
), respectively. For each floating-point type, 

these values are equal to nearest representable values of respective mathematical constants.  
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2 Pursuant to [namespace.std], a program may partially or explicitly specialize a math constant 

variable template provided that the specialization depends on a program-defined type. 
3 A program that instantiates a primary template of a math constant variable template is ill-

formed. 

 

6. References 
 
The POSIX version of math.h is described at 
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/math.h.html. 
 
The OpenCL mathematical constants are defined in a file opencl_math_constants, see 
https://raw.githubusercontent.com/KhronosGroup/libclcxx/master/include/opencl_math_constants. 
 
The GNU math extensions: https://gcc.gnu.org/onlinedocs/gcc-6.1.0/libstdc++/api/a01120_source.html 
 
A list of Boost math constants is at 
http://www.boost.org/doc/libs/release/libs/math/doc/html/math_toolkit/constants.html 
 

A possible implementation of the <math> header is at 
https://github.com/levmin/P0631/blob/master/math 
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