
Document: P0466R5
Date: 2019-07-19
Reply-to: Lisa Lippincott <lisa.e.lippincott@gmail.com>
Audience: LWG

Layout-compatibility and Pointer-interconvertibility Traits

Lisa Lippincott

Abstract

Over dinner at CppCon, Marshall Clow and I discussed a bit of code that relied on two types being
layout-compatible. As it happened, the types weren’t layout-compatible after all. I opined that there
should be a way to statically assert layout-compatibility, so that the error would be caught at compile
time, rather than dinner time. Marshall replied, “Write a proposal.” This is that proposal.

In addition to a test for layout-compatibility, I propose tests for correspondence in the initial common
sequence of two types, and for situations in which objects are pointer-interconvertible.

Changes from r5 (2019-07-16 PM draft for CWG) to r5 (2019-07-17 draft for LWG): In Cologne
on 2019-07-17, CWG asked for one change:

• Remove “as desired” from the note in section 6.

I have updated the paper accordingly. Distaste was also expressed for the use of “is” or “are”, rather than
“shall be” in the “Comments” column of the table entries, but no change was requested.

Changes from r5 (2019-07-16 AM LWG draft) to r5 (2019-07-16 PM draft for CWG): In Cologne
on 2019-07-16, an LWG small group asked for changes:

• Change is pointer interconvertible base of<T,T> to produce true, like is base of.

• Change “shall be” to “is” or “are” in four places.

• Provide more clarity for null member pointers, pointers to member functions, and non-standard-layout
classes.

• In the note, avoid suggesting that people may not be confused about standard-layout classes.

• Reword the note to avoid using “this” with an unclear referent.

• Provide a feature-test macro.

I have updated the paper accordingly.

Changes from r5 (CWG draft) to r5 (2019-07-16 AM draft for LWG): In Cologne on 2019-07-15,
CWG answered the three questions posed, accepting the changes proposed by LWG members, subject to
two further conditions:

• That in the description of is pointer interconvertible base of, the words “possibly cv-qualified”
be parenthesized.

• That I emphasize to LWG that is pointer interconvertible base of v<T,T> is false under the
current wording.

I have incorporated the CWG-approved text into the green editorial instructions, removed the CWG ques-
tions, and added text pointing out the false value.

1

Hubert Tong, in correspondence, also asks that LWG check that the functions taking pointers-to-members
provide the intended answers when given null pointers, pointers to member functions, and members of classes
that are not standard layout. I’ve added text describing my understanding of the wording in these cases.

Changes from r4 to r5 (draft shown to CWG): Addressing issues raised by Daniel Krügler and Marshall
Clow:

• Changing “Requires” to “Mandates” in function descriptions, following new LWG practice.

• Aligning the text suggested to CWG for is pointer interconvertible base of with the existing
constraint for is base of, allowing a trivial answer to be provided in some cases when the type of
Derived is incomplete.

Changes from r3 to r4: Addressing questions posed by Alisdair Merideth:

• Layout compatibility is an equivalence relation. While the trait has been renamed to the less apparently
symmetric is layout compatible, the description uses the phrase “are layout-compatible” following
core usage.

• Pointer-interconvertibility does not respect access control, so is pointer interconvertible base of

also does not respect access control.

• is pointer interconvertible with class(m) returns false when m is a pointer to member function.
This should be clarified in normative text.

• Added three questions for CWG approval. Two involve allowing the traits to be used for cv void

and for arrays of unknown length, despite the incompleteness of those types. The third involves the
clarification that a member function cannot be found pointer-interconvertible with an object.

Also, rebasing on N4800.

Changes from r2 to r3: At the 2019 Kona meeting, LEWG approved the change back to constexpr

functions instead of template<auto> for the tests on pointers-to-members. The section “Alternate Wording
as Traits” is thus removed.

At the 2018 Batavia meeting of LWG, it was suggested that the two remaining traits can be extended
in a trivial way to incomplete non-class types. This change was found acceptable in both LEWG and EWG
discussions at Kona in 2019. However, to avoid changing wording that impacts CWG, I’m choosing not to
make that change at this time.

Also, based on Batavia LWG feedback, the note about expressions of the form &T::m has been reworded
to avoid calling such expressions “literals.”

Changes from r1 to r2: These changes are based on feedback in the second Core discussion at Jacksonville,
2018-03-16. Each of these changes is more directly relative to the draft presented there.

• Adding wording to insist on complete types as arguments to the traits.

• Correcting the order of template parameters in the synopsis of is corresponding member.

• When describing is pointer interconvertible with class, writing of each object in the singular.
On my own initiative, likewise changing is pointer interconvertible base of.

• Changing “happily fails” to “fails, as desired.”

These changes are based on feedback in the first Core discussion at Jacksonville, 2018-03-13.

• Rewriting the abstract and much of the front matter to remove incorrect blather about reinterpret cast.
Instead, I’ve tried to restrict the text to mostly true statements.

• Restoring the constexpr functions from revision 0, as core-preferred alternatives to the traits in revision
1. The traits wording is kept and updated as an alternative.

2

• Renaming pointer-interconvertibility tests to express their function, rather than their mechanism, and
changing their definitions to refer to core definitions, rather than mimic core definitions.

is initial base of → is pointer interconvertible base of

is initial member → is pointer interconvertible with class

This renaming more directly expresses the intent of these facilities, simplifies their wording, and allows
them to track future changes in core wording.

More generally, it is better to say what one means, rather than say what means what one means.

• Using phrases, rather than declarator syntax, when naming pointer-to-member types.

• Rebasing on draft n4713 of the standard.

• Correction of various typographic errors.

These changes are on my own initiative:

• Moving the enclosing-class template parameters of is corresponding member to the front of the pa-
rameter list, for use with explicit template arguments.

• Removing the increasingly-pointless requirement that the functions be ill-formed when applied to
pointers to member functions. They can return false instead.

• Consolidating the notes about pointer to member expressions.

• Adding v definitions to the synopses where needed.

Changes from r0 to r1: These changes are based on the Library Evolution discussion at Kona in 2017.
First, renaming the plural traits:

are layout compatible → is layout compatible

are common members → is corresponding member
Second, changing is initial member and is corresponding member from constexpr functions to ordi-

nary traits using template <auto>. My thanks go to Louis Dionne for the sample implementation code.
On my own initiative, I have added a discussion and notes on the dangers of deducing the containing

type from a member pointer constant.

1 Introduction

Currently, a program may rely on layout-compatibility, but cannot assert that the layout-compatibility it
relies upon pertains. Even when a programmer carefully verifies layout-compatibility, a future change to the
types involved may break the compatibility, silently introducing a bug.

A compiler, having full information about the types, can easily check layout-compatibility. But the
compiler currently has no way to determine which types need to be layout-compatible. This gap can be
bridged straightforwardly with a type trait expressing the layout-compatibility relationship:

template <class T, class U> struct is_layout_compatible;

Using this trait, a function may statically assert the layout-compatibility it relies upon.
Delving deeper into the problem, I found another situation where a programmer might rely on a fact

about the type system that can’t be asserted: the pointer-interconvertiblity of an object and an initial base
or member subobject. A simple type trait handles the base subobject case:

template <class Base, class Derived>

struct is_pointer_interconvertible_base_of;

The initial member subobject case turns out to be trickier. The test should take a member pointer as a
parameter:

3

template <class S, class M, M S::*m>

struct is_pointer_interconvertible_with_class;

That works, but with three template parameters, it’s really cumbersome. In use, the first two parameters
are redundant — the type of m determines S and M. But, because this is a class template, the earlier parameters
can’t be inferred. A function template is easier to use:

template <class S, class M>

constexpr bool

is_pointer_interconvertible_with_class(M S::*m) noexcept;

The use of this function is a little more broad: it can be called in a non-constexpr context. An alternative
formulation retains the traits syntax, at the expense of this breadth:

template <auto m> struct is_pointer_interconvertible_with_class;

Such a trait can be implemented by forwarding decltype(m).

A similar situation can occur with layout-compatibility: a programmer may rely on particular members
of layout-compatible types overlaying each other. More generally, the overlap of the common initial sequence
of two types (10.3 [class.mem]) can only be relied upon if the programmer is sure that particular members
correspond. So I’m proposing a second function for testing correspondence in the common initial sequence:

template <class S1, class S2, class M1, class M2>

constexpr bool

is_corresponding_member(M1 S1::*m1, M2 S2::*m2) noexcept;

As above, an alternative would be to stick to traits:

template <auto m1, auto m2> struct is_corresponding_member;

Note: There is a danger in deducing the type of the containing class from the type of a pointer-to-member
expression of the form &T::m. Consider the following example:

struct A { int a; };

struct B { int b; };

struct C: public A, public B {};

static_assert(is_pointer_interconvertible_with_class(&C::b));

// Succeeds because, despite its appearance, &C::b has type

// "pointer to member of B of type int."

static_assert(is_pointer_interconvertible_with_class<C>(&C::b));

// Forces the use of class C, and happily fails.

static_assert(is_corresponding_member(&C::a, &C::b));

// Succeeds because, despite appearances, &C::a and &C::b have types

// "pointer to member of A of type int" and

// "pointer to member of B of type int," respectively.

static_assert(is_corresponding_member<C,C>(&C::a, &C::b));

// Forces the use of class C, and happily fails.

The awkwardness of the deduced type of pointer-to-member constants was discussed in core language issue
203; no action was taken for fear of breaking existing code.

2 is layout compatible

Add to table 49 in 19.15.6 [meta.rel]:

4

Template Condition Comments

template <class T, class U> struct

is layout compatible;

T and U are layout-compatible
(6.7 [basic.types])

T and U are com-
plete types, cv void,
or arrays of unknown
bound.

To the best of my knowledge, layout compatibility is an equivalence relation. While the trait has been re-
named to the less apparently symmetric is layout compatible, the phrase “are layout-compatible” follows
core usage, e.g. 6.7 [basic.types]¶11:

Two types cv1 T1 and cv2 T2 are layout-compatible types if T1 and T2 are the same type,
layout-compatible enumerations, or layout-compatible standard-layout class types.

Add to 19.15.2 [meta.type.synop], in the section corresponding to 19.15.6 [meta.rel]:

template <class T, class U> struct is_layout_compatible;

template<class T, class U>

inline constexpr bool is_layout_compatible_v

= is_layout_compatible<T,U>::value;

3 is pointer interconvertible base of

Add to table 49 in 19.15.6 [meta.rel]:

Template Condition Comments

template <class Base,

class Derived> struct

is pointer interconvertible base of;

Derived is unambiguously
derived from Base without
regard to cv-qualifiers, and
each object of type Derived is
pointer-interconvertible (6.7.2
[basic.compound]) with its
Base subobject, or Base and
Derived are not unions and
name the same class type
without regard to cv-qualifiers.

If Base and Derived

are non-union
class types and
are not (possibly
cv-qualified) ver-
sions of the same
type, Derived is a
complete type.

Here the derivation relationship need not be public, as pointer-interconvertibility does not respect access
control. Note that is pointer interconvertible base of v<T,T> is always true under this wording, even
though T is not derived from itself.

Add to 19.15.2 [meta.type.synop], in the section corresponding to 19.15.6 [meta.rel]:

template <class Base, class Derived>

struct is_pointer_interconvertible_base_of;

template<class Base, class Derived>

inline constexpr bool is_pointer_interconvertible_base_of_v

= is_pointer_interconvertible_base_of<Base,Derived>::value;

4 is pointer interconvertible with class

This pretty clearly belongs in <type traits> (19.15 [meta]), but I don’t see a clear choice of subsection to
put it in. I suggest a new subsection, “Member relationships.”

Add a new subsection after [meta.logical]:

5

19.15.9 Member relationships [meta.member]

template <class S, class M>

constexpr bool

is_pointer_interconvertible_with_class(M S::*m) noexcept;

Mandates: S is a complete type.
Returns: true if and only if S is a standard-layout type, M is an object type, m is not null, and each
object s of type S is pointer-interconvertible (6.7.2 [basic.compound]) with its subobject s.*m.

Add to 19.15.2 [meta.type.synop], in the corresponding position:

// 19.15.9 Member relationships

template <class S, class M>

constexpr bool

is_pointer_interconvertible_with_class(M S::*m) noexcept;

5 is corresponding member

Add this text to the same subsection as is pointer interconvertible with class:

template <class S1, class S2, class M1, class M2>

constexpr bool

is_corresponding_member(M1 S1::*m1, M2 S2::*m2) noexcept;

Mandates: S1 and S2 are complete types.
Returns: true if and only if S1 and S2 are standard-layout types, M1 and M2 are object types, m1 and
m2 are not null, and m1 and m2 point to corresponding members of the common initial sequence (12.2
[class.mem]) of S1 and S2.

Add to 23.15.2 [meta.type.synop], in the corresponding section:

template <class S1, class S2, class M1, class M2>

constexpr bool

is_corresponding_member(M1 S1::*m1, M2 S2::*m2) noexcept;

6 Note about pointer to member expressions

To the same section as the functions above, add a note:

[Note: The type of a pointer-to-member expression &C::b is not always a pointer to member of C, leading
to potentially surprising results when using these functions in conjunction with inheritance. Consider
the following example:

struct A { int a; }; // a standard-layout class

struct B { int b; }; // a standard-layout class

struct C: public A, public B {}; // not a standard-layout class

static_assert(is_pointer_interconvertible_with_class(&C::b));

// Succeeds because, despite its appearance, &C::b has type

// "pointer to member of B of type int."

static_assert(is_pointer_interconvertible_with_class<C>(&C::b));

6

// Forces the use of class C, and fails.

static_assert(is_corresponding_member(&C::a, &C::b));

// Succeeds because, despite appearances, &C::a and &C::b have types

// "pointer to member of A of type int" and

// "pointer to member of B of type int," respectively.

static_assert(is_corresponding_member<C,C>(&C::a, &C::b));

// Forces the use of class C, and fails.

—end note]

7 Feature-test macros

Add to the table in [support.limits.general]:

Macro name Value Header(s)

cpp lib is layout compatible some value <type traits>

cpp lib is pointer interconvertible some value <type traits>

It has been noted that this paper introduces two separate features, one relating to layout-compatibility
and common initial sequence, and the other relating to pointer-interconvertibility. I have therefore included
two macros.

The macro cpp lib is layout compatible is intended to cover both is layout compatible and
is corresponding member. The macro cpp lib is pointer interconvertible is intended to cover both
is pointer interconvertible base of and is pointer interconvertible with class.

7

