
Not All Agents Have TLS
This paper: P1367R0.

Author: ogiroux@nvidia.com

Date: 11/11/2018.

The reality of thread_local is much more complicated than wording in the
Standard allow us to even explain. This paper proposes to standardize existing
practice, not to materially improve it.

Revision history
R0: This is the first version. It already includes some feedback from the reflector.

The current nature of reality
The Standard guarantees that object definitions with thread_local storage are
instantiated with every thread. It's a little vague whether the word 'thread' here
refers to each thread of execution, or only instances of std::thread and the
implementation-defined thread that runs main. Other than that, it's unambiguous
that thread_local is required in C++11, and later.

Implementations don't always meet the requirements of the Standard in this
area; most implementations either don't implement, or implement di!erent
semantics for thread_local objects in at least some of the execution agents that
they comprise. This situation is not going to change because the cost/benefit
calculus that buttresses this situation is not likely to change.

Proposed direction
Here is my 5-point proposal to reframe TLS...

1. thread_local always refers to the thread of execution.

mailto:ogiroux@nvidia.com

It is not referring to an assumed std::thread. It is the one and only keyword to
declare an object with X-local storage. If the execution agent you are executing on
has TLS, and I'll explain how to figure this out below, then thread_local objects
are local to that agent.

Similarly, we should strive for the std::this_thread namespace to also refer to
the thread of execution. There, we may want to provide functions to query
execution agent properties. For instance, we could expose bool
std::this_thread::has_thread_local();.

2. std::thread, agents of std::async, support thread_local.

That this is unconditionally true is required for compatibility with C++11. It's
implementation-defined whether these exist in Freestanding C++, however. An
implementation that claims it is Freestanding C++ can provide alternate forms of
threads with di!erent TLS semantics so long as they are not spelled std::thread.

3. The thread that runs main has implementation-defined TLS.

However, this is bounded by two conditions:

If std::thread is implemented, then main supports thread_local.
If main doesn't support thread_local, then thread_local objects have
static storage instead.

4. Executors can expose the has_thread_local property.

If execution::can_query_v<Ex,execution::has_thread_local_t> is false,
then execution agents provided by this executor support thread_local.
Otherwise, they support thread_local if has_thread_local is true. If
thread_local is not supported then uses of such objects could be ill-formed-no-
diagnostic-required or undefined (enabling the this_thread query, for one).

Parallel algorithms have implementation-defined support, as if there existed a
default executor.

5. Attributes can reenable selective support for execution agents.

Implementations can define attributes so that, e.g. [[xyz_local]]
thread_local int x; introduces a thread_local object that is not ill-formed
for the execution agents of feature xyz. However, since it is not valid for executor
to set has_thread_local to true without supporting all thread_local objects,
implementations should define new executor properties, e.g. has_xyz_local
specific to the attributes they also define.

Execution agents where has_thread_local is true ignore these attributes
because they support all thread_local objects unconditionally.

See also
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3487.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3556.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4439.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0097r0.html

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0108r1.html

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0772r1.pdf

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3487.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3556.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4439.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0097r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0108r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0772r1.pdf

	Not All Agents Have TLS
	Revision history
	The current nature of reality
	Proposed direction
	1. thread_local always refers to the thread of execution.
	2. std::thread, agents of std::async, support thread_local.
	3. The thread that runs main has implementation-defined TLS.
	4. Executors can expose the has_thread_local property.
	5. Attributes can reenable selective support for execution agents.

	See also

