
weak_equality considered harmful
Document number: P1307
Date: 2018-10-08
Audience: EWG
Reply-to: Tony Van Eerd. regular at forecode.com

If I had more time, I would have written a shorter letter. - Blaise Pascal (and others)

I hope that most programmers will learn the fundamental semantic properties of
fundamental operations. What does assignment mean? What does equality mean? How to
construct data structures.

At present C++ is the best vehicle for this style of programming.

-- Alex Stepanov

Synopsis (and about that title)
This paper will explain why weak_equality should not lead to the generation of == (nor !=).
(See P0515 for in the introduction of weak_equality and <=> into C++.)

The title of this paper is obviously "click-bait" like the goto paper it alludes to, but it is also accurate
- an == operator that is "weakly equal" is an oxymoron and is harmful to quality software; it will
break std algorithms and goes against Concepts, the Palo Alto paper (N3351), the Lakos "value
paper" (N2479), Stepanov and the Elements of Programming ("EoP") book, and the very
fundamentals of C++.

P.S. same goes for generating == from partial_ordering or weak_ordering. Also not good.

Background
To ensure everyone clearly understands the terms strong_equality and weak_equality from
P0515.

The strong in strong_equality refers to substitutability, the idea that x == y implies f(x) == f(y),
for all (Regular) f if f only accesses the salient attributes of x and y.

What is salient? See Lakos. Either N2479, or see actual John Lakos. But basically "salient" means
"the important parts" and the parts that are guaranteed to be copied/moved via construction and
assignment. The parts that define the value of the type. For example, the elements of a vector are

salient, and form the value of the vector, but capacity is not salient.

(It sounds like "salient" is arbitrary. To an extent, it is. It must be defined by each particular class.
But whatever the class defines as salient, it is important for it to be consistent about it - copy, move,
assign, and ==, should all agree. Again, see Lakos. And later examples in this paper.)

The weak in weak_equality means, unsurprisingly, not strong. ie a weak == does NOT imply
substitutability. As noted in P0515 it still forms an equivalence relation in the mathematical sense (ie
reflexive, symmetric, transitive - see Wikipedia), but not "equal" in the mathematical or substititable
sense. In fact, not "equal" in the equal (common English) sense. Like 2 and 7 are equivalent mod 5,
but 2 and 7 are not equal, they do not represent the same value.

So fundamentally, weak_equality generates an == such that == does not mean "equal". Thus it is an
oxymoron. :-(
Whereas, as this paper will explain, strong_equality means equality, as it is commonly known.

More on "equal"
What does equal mean?

The C++ Working Draft:

There are approximately 700 occurrences of "equal" in the Standard. Besides technical terms like
brace-or-equal-initializers, the Standard mostly uses "equal" in the English and mathematical
sense. When referring to syntactic ==, it will use more specific terms, like "compare equal".
The word "equal" is used in the sense of "weak_equality" 0 times.

The Standard also uses equivalent (550+ occurences) - "Effects: equivalent to..." - ie substitutible -
"equivalence of keys" is carefully explained as specific term, to be an equivalence relation (not
equality) on keys in map and set. Note that == is not used for key-equivalence.

The Palo Alto Paper (N3351)

There is an entire section: 3.1.1 Equality
First sentence:

"Reasoning about computer programs is facilitated by equational reasoning, which
allows us to substitute equals for equals."

Next:

"If two values represent the same entity, then they are equal."

But what is meant by "same entity"? It is not in Palo Alto. We need to turn to Elements of

Programming. For equality, EoP is (unsurprisingly) similar:

"Two values of a value type are equal if and only if they represent the same abstract
entity"

But EoP is more thorough. Page 1:

"An abstract entity is an individual thing that is eternal and unchangeable,... Blue and 13
are examples of abstract entities"

And Page 2 explains that values represent abstract entities (via datum - sequence of 0s and 1s). The
important part being the abstract thing, like 13 - this is the key to "value".

This is also explained similarly in Lakos (N2479) which Palo Alto references in the Equality section.

And more directly, Palo Alto, Page 50:

So, EqualityComparable is true if T 1. has == and != with result types that can be
converted to bool 2. == compares for true equality 3. == is reflexive, symmetric, and
transitive 4. != is the complement of ==

Note the existence of #2, implying that #3 isn't sufficient. "true equality" isn't defined anywhere,
but you can look at their definition of eq(), or the definition of equality and the quotes above.

Concepts (in the C++ Working Draft)

The Ranges/Concepts papers (now in the working paper) lean heavily on Palo Alto.
EqaulityComparable<T> requires the expected syntactic constraints of ==, but also "is satisfied only
if bool(a == b) is true when a is equal to b, and false otherwise". The "equal" in that sentence is
"English equal" not "syntactic equal" (else it would be redundant) and is further explained in the
[concepts.equality] section as strong equality (substitution).

To be clear: Concepts and Ranges assume == means strong equality

Thus some Concept-based std algorithms may break on types with weak equality. (As strong equality
is an assumption that an implementation may assume, which algorithms will break may differ per
implementation.)

But standard algorithms tend to only need partial ordering?
It was pointed out to me that

Alex Stepanov (or someone quoting him) would likely stomp on the notion of equivalence
being problematic. He’s retired now but famously stomps of people about mathematics,
and he designed STL to use equivalence for associative containers and I’ve never heard
him regret it.

(equivalence there meaning weak equality)

It is important to understand that algorithms tend to (and should) set minimal requirements for that
algorithm, whereas types are expected to be useful in a larger set of algorithms, and thus tend to
support a super-set of requirements. In particular, Regular is the concept that captures all these
common and expected requirements.

EoP page 7: "A type is regular if and only if its basis includes equality, assignment, destructor,
default constructor, copy constructor, total ordering, and underlying type."

Note total ordering. Not partial or weak. Even though most of Stepanov's STL only requires partial
ordering, a type is expected to have total ordering, (to be clear - the difference between the two is
strong equality).

So to answer the Stepanov question, agreed, equivalence is not problematic for an algorithm, but
Stepanov would find it problematic for a type.

Why?

It goes back to Palo Alto's "Reasoning about computer programs is facilitated by equational
reasoning, which allows us to substitute equals for equals."

Every important optimization technique is affiliated with some abstract property of
programming objects. Optimization, after all, is based on our ability to reason about
programs and to replace one program with its faster equivalent.

-- Alexander Stepanov, Notes on Programming

Another way to consider it is what Stepanov called "optimizing programmers":

The operations we have discussed here, equality and copy, are central because they are
used by virtually all programs. They are also critically important because they are the
basis of many optimizations... ...Such optimizations include, for example, common
subexpression elimination, constant and copy propagation, and loop-invariant code
hoisting and sinking. These are routinely applied today by optimizing compilers to
operations on values of built-in types. Compilers do not generally apply them to
operations on user types because language specifications do not place the restrictions
we have described on the operations of those types.

However, users do apply such optimizations by hand. They often do so without thinking
because they intuitively expect the conditions to apply.

If they are to produce efficient generic components without seeing the underlying type
definitions, they must be able to make the assumptions which allow such optimizations.
Our axioms, then, are necessary to allow users to reliably make the optimizations
commonly made both by optimizing compilers and by optimizing programmers.
Ultimately, we would like compilers to be able to perform such optimizations at a high
semantic level as well as they do at the built-in type level.

-- James C. Dehnert and Alexander Stepanov, Fundamentals of Generic Programming

ie we, as programmers, assume equality means substitution. We do this regularly.

The "algorithms" that require strong equality are the everyday lines of code we write.

The motivation for weak_equality
Why was weak_equality proposed in the first place, and is its motivation compelling enough to
include it in the standard? (spoiler alert: No.)

I see 2 motivations for weak_equality in P0515 (the original paper proposing <=>)

"completeness"1.
CaseInsensitiveString (and/or filenames)2.
building on Lawrence Crowl's comparison work (P0474, P0100)3.

Motivation 1: Completeness - ie it makes the table of the relationship between equality and
ordering more complete (and teachable):

+-----------------+------------------+
| | partial_ordering |
| weak_equality +------------------+
| | weak_ordering |
+-----------------+------------------+
| strong_equality | strong_ordering |
+-----------------+------------------+

Note however that it is not actually complete - partial_equality is missing. ie An equality that is
strong where defined, but not defined over the full set of values - ie this could be used for <=> over
floating point types (ie with strong equality everywhere except NaN). Rust, for example, has the
PartialEq trait for this.

In fact, strong vs weak (ie "is it substitutible") and partial vs total ("does it cover all values") are
orthogonal axes, conflated by P0515.

Motivation 2: CaseInsensitiveString (and/or case insensitive filenames)

The original <=> paper (P0515) used CaseInsensitiveString as a motivating example of a class that
might want to use weak_equality or weak_ordering.

Basically I don't find the example sufficiently motivating. It is an anti-pattern:

I feel that a class like this needs to decide whether case is salient or not. A typical litmus test is "if
we put a bunch of CISs into a set, would you be surprised when some disappeared?". Alternatively,
would the rest of the code (and user-base) be OK is the string was converted to lowercase in the
constructor?

If case is not salient, not important, then equality can ignore it, and it is actually strong
equality (like vector ignores capacity - it is not part of the value).
Alternatively, if case is salient, make it part of ==.

Neither case results in a weak ==.

A weak == is harmful in that it can lead to simple mistakes, reminiscent of Stepanov's "optimizing
programmers":

void set(X const & newX)
{
 if (oldX == newX)
 return;

 ... do stuff ...
}

A programmer would need to know not to use this pattern with CaseInsensitiveString, since
"important(?)" case information would be lost.

Now you are free to disagree with me when I say that CaseInsensitiveString is a bad class, and
that you will use it with a weak equality anyhow. Or that there a examples here and there that might
use weak equality.

Fine.

The real question here is not whether we allow you to write bad code. We always do. The question is
whether we encourage it, enable it, make it easy.

True, the standard isn't a guideline, but be very clear - the whole <=> feature is about making it
easier to be more correct. We don't add things to the language without sufficient motivation.

C++ as a language does not impose any constraints. You can define your equality
operator to do multiplication. But equality should be equality.

-- Alexander Stepanov

Motivation 3: Building on Crowl's P0474 and P0100

Much of the categorization in P0515 is based on Lawrence Crowl's very detailed comparison papers,
P0474 and P0100. Lawrence suggested a weak_equivalence() function (which makes sense on types
like CaseInsensitiveString that have weak or partial ordering), but never suggested promoting
that to ==. His papers are very clear that == should always be actual equality. (In fact, an earlier
version of his paper called it weak_equal, but he (correctly :-) later changed it to weak_equivalence).

It seems weak_equality, and the generation of a weak ==, was new in P0515 and did not get enough
scrutiny.

Suggested Actions
do not generate == from anything except strong_ordering and strong_equality
rename strong_equality to equality, weak_equality to weak_equivalence,
better, remove weak_equality completely, weak_ordering as well, as it becomes moot
consider introducing partial_equality, which may actually be useful

References
A shorter letter, https://quoteinvestigator.com/2012/04/28/shorter-letter/
Goto Considered Harmful is not the original title
https://en.wikipedia.org/wiki/Considered_harmful
Dr Dobb's interview with Alex Stepanov, March 1995
http://stepanovpapers.com/drdobbs-interview.html
Notes on Programming, Alexander Stepanov, http://stepanovpapers.com/notes.pdf
Fundamentals of Generic Programming, James C. Dehnert and Alexander Stepanov,
http://stepanovpapers.com/DeSt98.pdf
Elements of Programming (EoP book), Alexander Stepanov and Paul McJones,
http://elementsofprogramming.com
A Concept Design for the STL (N3351, the "Palo Alto paper"), B. Stroustrup and A. Sutton
(Editors), http://wg21.link/N3351
Normative Language to Describe Value Copy Semantics (N2479), John Lakos,
http://wg21.link/N2479
Salient, actual John Lakos, personal communication
Consistent comparison, Herb Sutter, Jens Maurer, Walter E. Brown, http://wg21.link/P0515
Comparison in C++, Lawrence Crowl, http://wg21.link/P0100
Comparison in C++: Basic Facilities, Lawrence Crowl, http://wg21.link/P0474

