
[[assert: std::disjoint(A,nA, B,nB)]]:
Contract assertions as an alternate
spelling of ‘restrict’
Document Number: P1296R0
Date: 2018-10-08
Reply-to: Phil Miller <phil.cpp@intensecomputing.com>
Authors: Phil Miller, Justin Szaday
Audience: Compiler implementers, for feedback on whether this syntax is suitable input for
obviating alias analysis, LWG or wording review and adoption

Introduction
There have been many calls over the years for code to have a way to signal compilers that
certain objects do not alias, allowing the compiler to optimize more aggressively. These include
at least

● C99's ̀restrict ` keyword and associated ̀__restrict__ ` extensions in C++
compilers

● the alias sets proposed in N4150
● ̀may_alias ` attributes
● IBM XL's ̀#pragma disjoint `
● ̀restrict_ptr ` proposals

However, specification of how C’s restrict extends to C++-specific constructs has seemingly
been comparatively fraught with difficulties, and hence has not proceeded.

With the addition of standard contract syntax and semantics to the C++ language, I believe that
similar effects can be achieved with no language impact and greater clarity for programmers by
adding a predicate to the standard library, tentatively named ̀disjoint ` here. This predicate
could be used in [[expects]] and [[assert]] contracts to convey the desired
information.

Related Proposals
P0856 (Hollman, Edwards, Trott. “Restrict Access Property for mdspan and span”) provides
complementary elaboration of the motivations for this effort, and why it should be pursued as a
library rather than language feature.

mailto:phil.cpp@intensecomputing.com

Present Proposal
Add a free function defined as follows to namespace std, in an appropriate header TBD:

template <typename T, typename U>
bool disjoint(const T* pt, size_t nt, const U* pu, size_t nu)
{
 intptr_t bt = pt, et = pt+nt;
 intptr_t bu = pu, eu = pu+nu;

 return (et <= bu) || (eu <= bt);
}

Requirements:

● The pointers pt and pu are valid.
● The expressions pt+nt and pu+nu are valid. (i.e. they point to elements within the same

array as pt and pu, respectively, or to one past the end, including the case where pt is a
pointer is to a non-array object and nt is 1 (or pu and nu, respectively); also, they do not
result in arithmetic overflow)

Motivating Data
To illustrate the substantial value of standardizing a way for developers to convey the absence
of alias-created hazards to a compiler transforming a loop, we need to evaluate code in which
relevant arguments do not alias, comparing the cases where the compiler is or isn’t provided
with that knowledge.

These data were provided by Justin Szaday of the University of Illinois, using a system he
helped develop, LORE: LOop Repository for the Evaluation of compilers. I asked him to search
for all entries in the repository that used __restrict__ as ingested. At my request, he
developed and applied a transformation to remove the __restrict__ qualifiers, and ran the
stored code benchmarks for each such loop on the original and modified versions of the code.

There are 2507 codelets in the repository that use __restrict__. Among the benchmark suites
from which they were extracted, their prevalence in each suite is as follows:

{'spec2006': 0.66, 'scimark2': 0.89, 'netlib': 0.88,
 'spec2000': 0.72, 'TSVC': 0.12, 'Kernels': 0.26,
 'ASC-llnl': 0.12, 'machinelearning': 0.87, 'NPB': 0.13,
 'cortexsuite': 0.85, 'FreeBench': 0.71, 'GitApps': 0.91,
 'Fhourstones': 0.67, 'libraries': 0.73, 'mediabench': 0.84,
 'ALPBench': 0.97, 'polybench': 0.03}

https://vectorization.computer/

This shows that among source code that expects to be performance sensitive, there is strong
demand for and willingness to use a means to explicitly inform compilers about the absence of
aliasing as an impediment to optimization.

Of 1861 loops evaluated with ICC 17.0.1 with -O3 optimization, 45% of the loops were 1.15x or
more faster with restrict than without it, and the geometric mean speedup of having it was 2.59x.
50% of the loops were minimally affected by removing restrict (within a 0.15x difference) and,
curiously, 5% of the loops were sped up by removing restrict. The most extreme values are
speedups of 28x, 33.25x, 35.5x, 42.4x, 48.4x, and 57.2x, and slowdowns of 0.27x and several
of 0.32x.

Of the 1939 loops evaluated with GCC version 6.2.0 with -O3, 734 (38%) experienced
statistically significant speedup by having restrict and 155 (8%) significant slowdown (Welch’s
t-test given unequal variance, 2 tailed, p < 0.05). The geometric mean of the execution time ratio
among loops with speedup was 2.385, and among loops with slowdown was 0.766. The most
extreme speedups were 41x, 39x, 39x, 38x, and 33x, and slowdowns of .26x, .36x, and .40x.

Evaluation of Clang 6.0.1 showed minimal results. We believe that this is the result of Clang
generating runtime checks for aliasing and code paths optimized for each alternative, but have
not confirmed this by inspection of the generated object code at this time.

 Loops Sped up Mean Speedup Slowed Mean Slowdown

GCC 1939 734 (38%) 2.39x 155 (8%) 0.766

ICC 1861 843 (45%) 2.59x 94 (5%) 0.61

From the above, we conclude that providing this information is very valuable to compilers, and
thus to developers and users of the given and resulting code.

Further analysis and likely a conference or journal paper will explore what transformations are
enabling the various degrees of speedup. For instance, smaller speedups are likely just
vectorization or similarly fine-grain optimizations, while larger speedups are likely the result of
major transformations like loop interchange that enable drastically better cache behavior.

Design Considerations
The basic design of this predicate will refer to ranges of memory locations, without regard for
the types involved, to avoid hang-ups seen with adopting __restrict__ itself in C++ about
issues like class members, views as vectors or scalars, etc.

I consider it a feature that this approach explicitly confines its statement about each input to a
particular range of locations (a single object, or some number of whole objects), rather than

“based on” pointer expressions from the C standard. As a quality of implementation matter,
compilers can use this information to explicitly inform developers when the provided disjointness
declarations are insufficient to enable transformations blocked by potential aliasing.

I choose to offer an interface using (pointer, count) pairs rather than (begin, end) pairs because
the expected use centers on arrays of counted objects, or where the count is more concise to
obtain than the end address.

E.g.
char *strcpy(char *dest, const char *src)
[[expects: disjoint(src, strlen(src), dest, strlen(src))]]

(As an aside, this illustrates that init-statements would be useful to have available in contract
attribute contexts)

template<typename T>
void template_vector_axpy(double a, std::vector<T> &x, const
std::vector<T> &y)
[[expects: disjoint(x.data(), x.size(), y.data(), y.size())]]

// Multiply m*n matrix by n*1 vector
void matrix_vector_multiply(int m, int n, const double *matrix, const
double *vector, double *output)
[[expects: disjoint(matrix, m*n, output, n) && disjoint(vector, n,
output, n)]]
// Note that const doesn’t help, because it only enforces that we
don’t write through *matrix or *vector, not that the pointed-to
values don’t change otherwise

Overloads
We really only need the very basic general case, but in the long run, I expect having various
other overloads also specified is desirable. I think it would be desirable to allow user-defined
overloads that involve at least one user-defined type, but it would have to be a template or inline
function from which compilers could similarly derive the substantive non-aliasing conclusions
from visible address comparisons, since I do not intend to prescribe specific semantics for all
functions named ‘disjoint’ used in contract expressions. My intention is to suggest a shared
vocabulary convention.

// Basic, relatively general case
template <typename T, typename U>
bool disjoint(const T* pt, size_t nt, const U* pu, size_t nu)
{

 intptr_t bt = pt, et = pt+nt;
 intptr_t bu = pu, eu = pu+nu;

 return (et <= bu) || (eu <= bt);
}

// E.g. `t` does not refer to any recursive member of `u`, nor vice
versa
template <typename T, typename U>
bool disjoint(const T& t, const U& u)
{
 intptr_t at = std::addressof(t);
 intptr_t au = std::addressof(u);

 return disjoint(at, 1, au, 1);
}

// Useful in things like sum(double *A, int n, double &s) for
// distinguishing output variables from the input
template <typename T, typename U>
bool disjoint(const T* pt, size_t nt, const U& u)
{
 intptr_t au = std::addressof(u);

 return disjoint(pt, nt, au, 1);
}

For std::span defined in P0122, similarly:

template <typename S, typename T, typename U>
boot disjoint(std::span<const T> s, const U& u)
{
 intptr_t au = std::addressof(u);

 return disjoint(s.data(), s.size(), au, 1);
}

Naming
WIth the above in mind, I would be unsurprised by bikeshedding of the name to something more
descriptive like disjoint_memory . I believe that whatever name is chosen should have the
same non-aliasing positive/negative sense as ‘disjoint’, to avoid creating a ubiquitous need for
negation in every expression where it’s used as intended.

C Compatibility
Whatever we do here, it would be desirable to maintain the possibility of importing compatible
functionality into the C standard as well. It would ideally pair with adoption of a proposal to add
contracts or other compiler-meaningful assertions in some form to the C standard.

The obvious adaptation is a non-template prototype along the lines of
_Bool disjoint(const char* pt, size_t nt, const char* pu, size_t nu)
This would work reasonably well, with an expression like sizeof(element_type)*n
generally appearing as the count arguments. C’s overload mechanism could be used to specify
versions for each basic type, but as I understand it would not work for arbitrary user-defined
types.

Usage applicability survey
Sampling a few dozen distinct uses of __restrict__ on Github, I found no cases that this
predicate and an [[expects]] or [[assert]] contract would not cover the intended
meaning with only a reasonable amount of verbiage.

Furthermore, in many cases, the existing uses of __restrict__ actually over-specify the
desired meaning. For instance, a function with many input arrays and a single output array may
designate them all __restrict__ , when the relevant characteristic is that each of the inputs is
disjoint from the output.

Acknowledgments
David Hollman provided encouragement, review, and references to additional relevant work.
Arthur O’Dwyer pointed out the possibility of arithmetic overflow in the expressions calculating
the end pointers.

