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Abstract

This paper recapitulates the evolution of std::less, and its sibling operator types. The pa-
per then proposes to reformulate these types in light of the improved understanding we have
achieved in recent years.

Some objects seem to disappear immediately while others never want to leave.
— LOUIS JENKINS

1 Background

The C++ standard library has long provided “basic function object classes” corresponding to all
the arithmetic, comparison, logical, and bitwise operators in the language.1 Over the years, there
have been a few significant changes to these “classes” (actually, class templates):

• Adopting [N3421] augmented each of these with a void specialization2 “to make <function
al>’s operator functors easier to use and more generic.”

• Adopting [N3657] then injected, into each of these void specializations, “a nested type called
is_transparent” as part of a “protocol” whose purpose was “to allow heterogeneous lookup
when using user-defined comparator functions.”

• Adopting [N3789] then inserted constexpr to provide “the ability to work at compile time.”

• Finally, adopting [P0090R0] removed “every mention of result_type, argument_type,
first_argument_type, and second_argument_type” from these class templates and their
specializations.3

Copyright c© 2018 by Walter E. Brown. All rights reserved.
1These are specified in [N4762] subclauses [arithmetic.operations], [comparisons], [logical.operations], and [bit-

wise.operations], respectively.
2Collectively, these void specializations have since been sometimes informally termed the diamond operators and

variables of such types have been sometimes termed diamond objects.
3A period of deprecation preceded the actual removal. [P0090R0] was merged into [P0005R4], whose adoption dep-

recated the listed aliases for C++17. Subsequently, the aliases were removed from the nascent C++20 via adoption of
[P0619R4].

1

mailto:webrown.cpp@gmail.com


2 D1291R0: std::ranges::less<> Should Be More!

Using std::less as representative of these function object classes, the cumulative effect of those
adopted proposals has led to implementations such as the following. First we have the primary
template (namespace elided):

1 template< class T = void >
2 struct less {

4 constexpr bool
5 operator() ( const T& x, const T& y ) const
6 {
7 return x < y;
8 }
9 }

In addition, we have the void specialization:

1 template<>
2 struct less<void> {

4 template<class T, class U>
5 constexpr auto
6 operator() ( T&& t, U&& u ) const
7 -> decltype(std::forward<T>(t) < std::forward<U>(u))
8 {
9 return std::forward<T>(t) < std::forward<U>(u);

10 }

12 using is_transparent = unspecified;
13 };

Most recently, specifications leading to such implementations, augmented by appropriate
constraints,4 have been adopted (for comparison function objects only) by the ranges pro-
posal [P0896R2]. In that proposal, these constrained templates are of course declared in the
std::ranges subnamespace so as to avoid conflicting with the existing unconstrained versions
in namespace std.

2 Proposal

With the likely near-term adoption of that ranges proposal [P0896R2], we seem to have a once-in-
a-generation opportunity to change the specifications of these function templates to obtain the far
simpler and more useful design we should have had all along, a design that has now been proven
by over six years of experience. Since the homogeneous comparison case is completely subsumed
by the heterogeneous case, we can achieve implementations illustrated by the following:

4For example, these constraits may take the form of requires clauses involving such concepts as
StrictTotallyOrdered<T> (for the primary template) and StrictTotallyOrderedWith<T,U> (for the void special-
ization).
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1 struct less {

3 template< class T, class U >
4 requires StrictTotallyOrderedWith<T, U>
5 or BUILTIN_PTR_CMP(T, <, U) // see footnote 5
6 constexpr auto
7 operator() ( T&& t, U&& u ) const
8 -> decltype(std::forward<T>(t) < std::forward<U>(u))
9 {

10 return std::forward<T>(t) < std::forward<U>(u);
11 }

13 using is_transparent = unspecified;
14 };

and analogously for the sibling arithmetic, comparison, logical, and bitwise function objects. Note
that we are no longer dealing with class templates; rather, we have ordinary classes, each with a
member function template operator() as today found in the diamond operator specialization.

As pointed out by Stephan T. Lavavej in personal correspondence, “CTAD allows diamond
objects to be constructed with less{} which is optimal, but the type still needs to be spelled as
less<> (e.g., in a map) which is an avoidable bit of complexity, and this [proposal] avoids it.”

If this proposal is countenanced by LEWG, we would proceed to refine our prototype constrained
code and then draft suitable wording for presentation in a subsequent revision of this paper.5
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