
std::ranges::less<> Should Be More!

Document #: WG21 D1291R0
Date: 2018–10–07
Project: JTC1.22.32 Programming Language C++
Audience: LEWG
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Background 1
2 Proposal 2
3 Acknowledgments 3

4 Bibliography 3
5 Document history 4

Abstract

This paper recapitulates the evolution of std::less, and its sibling operator types. The pa-
per then proposes to reformulate these types in light of the improved understanding we have
achieved in recent years.

Some objects seem to disappear immediately while others never want to leave.
— LOUIS JENKINS

1 Background

The C++ standard library has long provided “basic function object classes” corresponding to all
the arithmetic, comparison, logical, and bitwise operators in the language.1 Over the years, there
have been a few significant changes to these “classes” (actually, class templates):

• Adopting [N3421] augmented each of these with a void specialization2 “to make <function
al>’s operator functors easier to use and more generic.”

• Adopting [N3657] then injected, into each of these void specializations, “a nested type called
is_transparent” as part of a “protocol” whose purpose was “to allow heterogeneous lookup
when using user-defined comparator functions.”

• Adopting [N3789] then inserted constexpr to provide “the ability to work at compile time.”

• Finally, adopting [P0090R0] removed “every mention of result_type, argument_type,
first_argument_type, and second_argument_type” from these class templates and their
specializations.3

Copyright c© 2018 by Walter E. Brown. All rights reserved.
1These are specified in [N4762] subclauses [arithmetic.operations], [comparisons], [logical.operations], and [bit-

wise.operations], respectively.
2Collectively, these void specializations have since been sometimes informally termed the diamond operators and

variables of such types have been sometimes termed diamond objects.
3A period of deprecation preceded the actual removal. [P0090R0] was merged into [P0005R4], whose adoption dep-

recated the listed aliases for C++17. Subsequently, the aliases were removed from the nascent C++20 via adoption of
[P0619R4].

1

mailto:webrown.cpp@gmail.com

2 D1291R0: std::ranges::less<> Should Be More!

Using std::less as representative of these function object classes, the cumulative effect of those
adopted proposals has led to implementations such as the following. First we have the primary
template (namespace elided):

1 template< class T = void >
2 struct less {

4 constexpr bool
5 operator() (const T& x, const T& y) const
6 {
7 return x < y;
8 }
9 }

In addition, we have the void specialization:

1 template<>
2 struct less<void> {

4 template<class T, class U>
5 constexpr auto
6 operator() (T&& t, U&& u) const
7 -> decltype(std::forward<T>(t) < std::forward<U>(u))
8 {
9 return std::forward<T>(t) < std::forward<U>(u);

10 }

12 using is_transparent = unspecified;
13 };

Most recently, specifications leading to such implementations, augmented by appropriate
constraints,4 have been adopted (for comparison function objects only) by the ranges pro-
posal [P0896R2]. In that proposal, these constrained templates are of course declared in the
std::ranges subnamespace so as to avoid conflicting with the existing unconstrained versions
in namespace std.

2 Proposal

With the likely near-term adoption of that ranges proposal [P0896R2], we seem to have a once-in-
a-generation opportunity to change the specifications of these function templates to obtain the far
simpler and more useful design we should have had all along, a design that has now been proven
by over six years of experience. Since the homogeneous comparison case is completely subsumed
by the heterogeneous case, we can achieve implementations illustrated by the following:

4For example, these constraits may take the form of requires clauses involving such concepts as
StrictTotallyOrdered<T> (for the primary template) and StrictTotallyOrderedWith<T,U> (for the void special-
ization).

D1291R0: std::ranges::less<> Should Be More! 3

1 struct less {

3 template< class T, class U >
4 requires StrictTotallyOrderedWith<T, U>
5 or BUILTIN_PTR_CMP(T, <, U) // see footnote 5
6 constexpr auto
7 operator() (T&& t, U&& u) const
8 -> decltype(std::forward<T>(t) < std::forward<U>(u))
9 {

10 return std::forward<T>(t) < std::forward<U>(u);
11 }

13 using is_transparent = unspecified;
14 };

and analogously for the sibling arithmetic, comparison, logical, and bitwise function objects. Note
that we are no longer dealing with class templates; rather, we have ordinary classes, each with a
member function template operator() as today found in the diamond operator specialization.

As pointed out by Stephan T. Lavavej in personal correspondence, “CTAD allows diamond
objects to be constructed with less{} which is optimal, but the type still needs to be spelled as
less<> (e.g., in a map) which is an avoidable bit of complexity, and this [proposal] avoids it.”

If this proposal is countenanced by LEWG, we would proceed to refine our prototype constrained
code and then draft suitable wording for presentation in a subsequent revision of this paper.5

3 Acknowledgments

We are grateful to Casey Carter and Stephan T. Lavavej for their respective thoughtful comments
on an early draft of this paper.

4 Bibliography

[N3421] Stephan T. Lavavej: “Making Operator Functors greater<>.” ISO/IEC JTC1/SC22/WG21 docu-
ment N3421 (pre-Portland mailing), 2012–09–20. https://wg21.link/n3421.

[N3657] Jonathan Wakely, Stephan T. Lavavej, and Joaquín Ma López Muñoz: “Adding heterogeneous
comparison lookup to associative containers (rev 4).” ISO/IEC JTC1/SC22/WG21 document
N3657 (post-Bristol mailing), 2013–03–19. https://wg21.link/n3657.

[N3789] Marshall Clow: “Constexpr Library Additions: functional.” ISO/IEC JTC1/SC22/WG21 docu-
ment N3789 (post-Chicago mailing), 2013–09–27. https://wg21.link/n3789.

[N4762] Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4762 (corrected post-Rappersville mailing), 2018–07–07. https://
wg21.link/n4762.

[P0005R4] Alisdair Meredith, Stephan T. Lavavej,, and Tomasz Kamiński: “Adopt not_fn from Library
Fundamentals 2 for C++17.” ISO/IEC JTC1/SC22/WG21 document P0005R4 (post-Jacksonville
mailing), 2016–03–01. https://wg21.link/p0005r4.

[P0090R0] Stephan T. Lavavej: “Removing result_type, etc.” ISO/IEC JTC1/SC22/WG21 document
P0090R0 (pre-Kona mailing), 2015–09–24. https://wg21.link/p0090r0.

5[P0896R2] defines BUILTIN_PTR_CMP(T, op, U) as “a boolean constant expression [that] is true if and only if op in
the expression declval<T>() op declval<U>() resolves to a built-in operator comparing pointers.”

5While it might have been better to integrate these wording adjustments into the ranges proposal [P0896R2], we
prefer to avoid any risk of delayed acceptance of that paper.

https://wg21.link/n3421
https://wg21.link/n3657
https://wg21.link/n3789
https://wg21.link/n4762
https://wg21.link/n4762
https://wg21.link/p0005r4
https://wg21.link/p0090r0

4 D1291R0: std::ranges::less<> Should Be More!

[P0619R4] Alisdair Meredith, Stephan T. Lavavej,, and Tomasz Kamiński: “Reviewing Deprecated Facil-
ities of C++17 for C++20.” ISO/IEC JTC1/SC22/WG21 document P0619R4 (corrected post-
Rappersville mailing), 2018–06–08. https://wg21.link/p0619r4.

[P0896R2] Eric Niebler, Casey Carter, and Christopher Di Bella: “The One Ranges Proposal.” ISO/IEC
JTC1/SC22/WG21 document P0896R2 (corrected post-Rappersville mailing), 2018–06–25.
https://wg21.link/p0896r2.

5 Document history

Rev. Date Changes

0 2018–10–07 • Published as D1291R0, pre-San Diego mailing.

https://wg21.link/p0619r4
https://wg21.link/p0896r2

	Title
	Contents
	Abstract
	1 Background
	2 Proposal
	3 Acknowledgments
	4 Bibliography
	5 Document history

