
1

Recursive Type Template Instantiation

Document number: P1230R0
Date: 2018-10-03
Project: Programming Language C++
Audience: EWG, CWG
Authors: Mingxin Wang
Reply-to: Mingxin Wang <wmx16835vv@163.com>

Table of Contents

Recursive Type Template Instantiation .. 1
1 Introduction .. 1
2 Technical Specification .. 1
3 Known Use Case .. 2

1 Introduction

Currently, we are not able to refer to a type in its template. For example, it is impossible to let the return type of an
instantiation of std::function to be itself: std::function<std::function<std::function< /*
infinite recursion */ >()>()>. And we found it a common requirement in polymorphic programming.

Here is a use case in our production: there are many different periodic tasks in our system, some execute only once,
most of them execute several times with different and variable intervals. Therefore, it is required to design a runtime
abstraction for periodic task type to submit to one generic "timed thread pool" that manages several threads. In order to
avoid unnecessary "submission" that may introduce overhead in contention (e.g., acquire & release some mutex),
we think it could be efficient to let the execution of the abstraction output a type of itself, e.g.:
std::function<std::optional<std::pair<std::chrono::time_point<std::chrono::system

_clock>, std::function< /* infinite recursion */ >>>()>, but we are not able to define that type
within finite characters, and it turned out that we cannot use std::function in this case.

Therefore, we propose a new syntax for type template to refer to a part of itself, recursively. The syntax is to use the
template name as a recursive typename. For example, if we have template <class> class A and template
<class> class B, then A<B<A>> has the same semantics of A<B<A<B< /* infinite recursion */ >>>>.

2 Technical Specification

We propose the following content to be merged into clause 12.8 [temp.spec]:
A template-name could be used as a template-argument as a "recursive-template-argument" when the corresponding

2

template-parameter is a typedef-name.
The template-name of a recursive-template-argument shall appear in its upper-level template instantiation. [Note: For

example, while A<B<A>> is well-formed, A<B<C>> is not, providing C is a type template. –– end note]
A recursive-template-argument shall be replaced into its nearest upper-level template instantiation of the same

template-name during its template instantiation. [Note: For example, during the instantiation of A<B<A>>, the template
B shall be instantiated as B<A<B<A>>>. –– end note]

[Note: There is no specific rule to determine the equivalence among template instantiations with
recursive-template-arguments. For example, A<B<A>> and A<B<A<B<A>>>> are not the same type, even if they
generate similar code. However, the use of A<B<A<B<A>>>> could usually be reconstructed with A<B<A>>, and thus
compilers may warn for such usage. –– end note]

3 Known Use Case

The "timed thread pool" mentioned in the "Introduction" part was implemented with a hand-written recursive template
implementation, whose runtime abstraction is supported by the PFA (P0957).

https://github.com/wmx16835/wang/blob/master/src/main/experimental/concurrent.h#L235-L390
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0957r1.pdf

	Recursive Type Template Instantiation
	1 Introduction
	2 Technical Specification
	3 Known Use Case

