
P1103R0

Document Number: P1103R0
Date: 2018-06-22
Reply to: Richard Smith Google

richard@metafoo.co.uk
Gabriel Dos Reis Microsoft
gdr@microsoft.com

Merging Modules

Contents
I Commentary 1

1 Background 2
1.1 Introduction . 2
1.2 Stylistic conventions . 2

2 Summary of merged proposal 3
2.1 Basics . 3
2.2 Module partitions . 3
2.3 Support for non-modular code . 4
2.4 Templates . 5

3 Comparison to prior proposals 7
3.1 Changes to the Modules TS . 7
3.2 Changes relative to the Atom proposal . 7
3.3 Open questions . 8

II Wording 10

1 Scope 12

2 Normative references 13

3 Terms and definitions 14

4 General 15
4.1 Implementation compliance . 15
4.2 Acknowledgments . 15

5 Lexical conventions 16
5.1 Separate translation . 16
5.2 Phases of translation . 16
5.4 Preprocessing tokens . 18
5.11 Keywords . 18

6 Basic concepts 19
6.1 Declarations and definitions . 19
6.2 One-definition rule . 20

Contents i

P1103R0

6.3 Scope . 21
6.4 Name lookup . 22
6.5 Program and linkage . 23
6.6 Start and termination . 25

10 Declarations 27
10.1 Specifiers . 27
10.3 Namespaces . 27
10.7 Modules . 28

12 Classes 50
12.2 Class members . 50

16 Overloading 51
16.5 Overloaded operators . 51

17 Templates 52
17.6 Name resolution . 52

19 Preprocessing directives 57
19.2 Source file inclusion . 57
19.3 Legacy header units . 58

Contents ii

Part I

Design and commentary

1

P1103R0

1 Background [bg]
1.1 Introduction [bg.intro]
At the Jacksonville 2018 committee meeting, P0947R0 (“Another Take On Modules”, hereafter referred to as
Atom) was presented. Two options were polled:

— merging the Atom proposal with the Modules TS, and

— progressing the Atom proposal as a separate TS.

Both options passed, but the first option had stronger support. This paper describes our effort in merging
the two proposals and the remaining outstanding questions from the merge, and provides wording for the
resulting merged specification.

1.2 Stylistic conventions [bg.conventions]
The wording section of this document describes a “diff of a diff.” The usual convention of using text style for
added and removed text does not work well for such situations. In its place, we use block-style diffs showing
the text of the Modules TS before and after this document is applied:

Before

Here is some text from the C++ standard with some additions from the Modules TS.

After

Here is some text from the C++ standard with some additions from the Modules TS and some more
from the Atom proposal.

Unchanged text from the Modules TS is retained in this document so that a complete picture of the “after”
wording may be obtained by simply ignoring the “before” regions.

§ 1.2 2

P1103R0

2 Summary of merged proposal [merged]
2.1 Basics [merged.basic]

1 A module unit begins with a preamble, comprising a module declaration and a sequence of imports:
exportopt module foo;
import a;
export import b;
// ... more imports ...

Within a module unit, imports may only appear within the preamble. The export keyword indicates that a
module unit is a module interface unit, which defines the interface for the module. For a module foo, there
must be exactly one translation unit whose preamble contains export module foo;. This is the primary
module interface unit for foo (2.2).

2 A declaration can be exported by use of the export keyword:
export int a;
export {
void f();
}

Imports control which namespace-scope names are visible to name lookup. Names introduced by exported
declarations are visible to name lookup outside the module, in contexts that import that module. Names
introduced by non-exported declarations are not.

3 The behavior of an entity is determined by the set of reachable declarations of that entity. Entities introduced
after the preamble in a module unit are owned by that module; when such an entity is used outside that
module, its reachable declarations are those that are part of the interface of the module. In particular, a class,
function, template, etc. that is owned by a module always has the same semantics when viewed from outside
the module. Within a module unit of the owning module, the semantic properties accumulate throughout the
file. Class members and enumeration members are visible to name lookup if there is a reachable definition of
the class or enumeration.

4 Exported declarations are reachable outside the module. When an entity is exported, it must be exported on
its first declaration, and all exported declarations of that entity are required to precede any non-exported
declaration of that entity. If an entity has no exported declarations all declarations of that entity within the
interface of the module are considered reachable.

5 Declarations in the module interface (excluding those with internal linkage) are visible and reachable in
implementation units of the same module, regardless of whether they are exported.

2.2 Module partitions [merged.part]
1 A complete module can be defined in a single source file. However, the design, nature, and size of a module

may warrant dividing both the implementation and the interface into multiple files. Module partitions provide
facilities to support this.

2 The module interface may be split across multiple files, if desired. Such files are called module interface
partitions, and are introduced by a module declaration containing a colon:

export module foo:part;

§ 2.2 3

P1103R0

3 Module partitions behave logically like distinct modules, except that they share ownership of contained
entities with the module that they form part of. This allows an entity to be declared in one partition and
defined in another, which may be necessary to resolve dependency cycles. It also permits code to be moved
between partitions of a module with no impact on ABI.

4 The primary module interface unit for a module is required to transitively import and re-export all of the
interface partitions of the module.

5 When the implementation of a module is split across multiple files, it may be desirable to share declarations
between the implementation units without including them in the module interface unit, in order to avoid all
consumers of the module having a physical dependency on the implementation details. (Specifically, if the
implementation details change, the module interface and its dependencies should not need to be rebuilt.)
This is made possible by module implementation partitions, which are module partitions that do not form
part of the module interface:

module foo:part;

6 Module implementation partitions cannot contain exported declarations; instead, all declarations within
them are visible to other translation units in the same module that import the partition. [Note: Exportation
only affects which names and declarations are visible outside the module. —end note]

7 Module implementation partitions can be imported into the interface of a module, but cannot be exported.
8 Module interface partitions and module implementation partitions are collectively known as module partitions.

Module partitions are an implementation detail of the module, and cannot be named outside the module. To
emphasize this, an import declaration naming a module partition cannot be given a module name, only a
partition name:

module foo;
import :part; // imports foo:part
import bar:part; // syntax error
import foo:part; // syntax error

2.3 Support for non-modular code [merged.nonmodular]
1 This proposal provides several features to support interoperation between modular code and traditional

non-modular code.

2.3.1 Global module fragment [merged.legacy.frag]
1 The merged proposal permits Modules TS-style global module fragments, with the module; introducer

proposed in P0713R1 and approved by EWG:
module;
#include "some-header.h"
export module foo;
// ... use declarations and macros from some-header.h ...

2 Only #includes are permitted to appear in the global module fragment, but there are no special restrictions
on the contents of the #included file.

3 Declarations from code in the global module fragment are not owned by the module, and are not reachable
from outside the module by default. Instead, such declarations become reachable if they are referred to
by an exported declaration (or transitively if they are referred to by another reachable declaration). Two
important special cases are that an export using declaration exports both the nominated name and all
reachable declarations of that name, and an exported function declaration exports all reachable declarations
of its return type:

§ 2.3.1 4

P1103R0

module;
#include "some-header.h" // defines class X and Y
export module foo;

export using X = ::X; // export name X; export all declarations
// of X from "some-header.h"

export Y f(); // export name f; export all declarations
// of Y from "some-header.h"

2.3.2 Legacy header units [merged.legacy.import]
1 The merged proposal also permits Atom-style legacy header units, which are introduced by a special import

syntax that names a header file instead of a module:
export module foo;
import "some-header.h";
// ... use declarations and macros from some-header.h ...

2 The named header is processed as if it was a source file, the interface of the header is extracted and made
available for import, and any macros defined by preprocessing the header are saved so that they can be made
available to importers.

3 Declarations from code in a legacy module header are not owned by any module. In particular, the same
entities can be redeclared by another legacy header unit or by non-modular code. Legacy module headers
can be re-exported using the regular export import syntax:

export module foo;
export import "some-header.h";

However, when a legacy header unit is re-exported, macros are not exported. Only the legacy header import
syntax can import macros.

4 Declarations within a legacy header unit are reachable only if the legacy header unit is imported. (There is
no special rule for declarations that are referred to by an exported declaration.)

2.3.3 Module use from non-modular code [merged.nonmodular.use]
1 Modules and legacy header units can be imported into non-modular code. Such imports can appear anywhere,

and are not restricted to a preamble. This permits “bottom-up” modularization, whereby a library switches
to providing only a modular interface and defining its header interface in terms of the modular interface.
Headers imported as legacy header units are treated as non-modular code in this regard.

2 When a #include appears within non-modular code, if the named header file is known to correspond to a
legacy header unit, the implementation treats the #include as an import of the corresponding legacy header
unit. The mechanism for discovering this correspondence is left implementation-defined; there are multiple
viable strategies here (such as explicitly building legacy header modules and providing them as input to
downstream compilations, or introducing accompanying files describing the legacy header structure) and
we wish to encourage exploration of this space. An implementation is also permitted to not provide any
mapping mechanism, and process each legacy header unit independently.

2.4 Templates [merged.temp]
1 Template instantiations are notionally performed in “instantiation units”, not within translation units that

might contain imports. We must therefore specify which names are visible and which declarations are
reachable in these instantiation units.

2 The rules follow from a simple principle: when code at some point X triggers a template instantiation, that
instantiation should be able to reach (at least) the declarations that were reachable at X. Therefore, within

§ 2.4 5

P1103R0

a template instantiation, a declaration is reachable if it was reachable at one of the points where an enclosing
instantiation was triggered. If that point is in the translation unit containing the point of instantiation, this
includes all declarations reachable at that point; if the point is in an intervening instantiation in a module
interface, only declarations that would be reachable to an importer of that module or that are visible through
an import of that module are reachable. [Note: This only matters for entities that are not owned by a named
module: for entities owned by a named module, a superset of the above properties are always reachable
outside the owning module. —end note]

3 [Example:
export module A;
// instantiation of this template...
export template<typename T> auto f(T t, T u) {

return t * u;
}

export module B;
import A;
import "my_complex.h";
// ... finds declarations that are reachable here ...
export template<typename T> auto g(T t) {

my_complex<T> v(1, t);
return f(v, v);

}

module C;
import B;
import "my_rational.h";
// ... and those that are reachable here
void use() {

g<my_rational>(1);
}

my_complex and my_rational are complete types within the template instantiation, even though my_complex
is not a complete type in either module A or module C. —end example]

4 In addition to semantic properties of entities, we must determine which names are found by argument-
dependent name lookup. For that purpose, we follow the Modules TS rule (subject to ongoing work on
P0923) for associated entities owned by a named module and make functions visible if they are declared in
that module, in the same namespace as the associated entity. For associated entities not owned by a named
module, functions are visible to argument-dependent name lookup if they are declared in the same namespace
as the associated entity, and are visible at a point where an enclosing instantiation was triggered. [Example:
In the previous example, operator* can be found by argument-dependent name lookup in the legacy header
modules for "my_complex.h" and "my_rational.h". —end example]

§ 2.4 6

P1103R0

3 Comparison to prior proposals [vs]
3.1 Changes to the Modules TS [vs.ts]

1 This section lists the ways in which valid code under the Modules TS would become invalid or change meaning
in this merged proposal.

2 A module; introducer is required prior to a global module fragment, as described in P0713R1 and approved
by Evolution.

3 When an entity is owned by a module and is never exported, but is referenced by an exported part of the
module interface, the Modules TS would export the semantic properties associated with the entity at the
point of the export. If multiple such exports give the entity different semantics, the program is ill-formed:

export module M;
struct S;
export S f(); // S incomplete here
struct S {};
export S g(); // S complete here, error

Under the Atom proposal, the semantics of such entities are instead determined their the properties at the
end of the module interface unit, and that is the rule used in this merged proposal. This is similar to the
resolution of P0906R0 issue 1, as discussed and approved by Evolution, under which the semantic properties
at the last such export are used. The difference can be observed in a module such as:

export module M;
struct S;
export S f();
struct S {};

In the P0906R0 approach, the return type of f() is incomplete in importers of M, so f() cannot be called.
In this merged proposal, the return type of f() is complete because a definition of S appears within the
interface unit. [Note: The order in which declarations appear within a module interface has no bearing on
which semantic properties are exported in this merged proposal. —end note]
The Modules TS “attendant entities” rule is removed, because there are no longer any cases where it could
apply.

4 Entities declared within extern "C" and extern "C++" within a module are no longer owned by that module.
In the Modules TS, such declarations would be considered attached to the module in whose purview they
appear, which means they can only be exported by one module (although they can still be redeclared in
multiple modules).

5 The global module fragment can only directly contain #include directives, not arbitrary code.

3.2 Changes relative to the Atom proposal [vs.atom]
1 This section lists the ways in which valid code under the Atom proposal would become invalid or change

meaning in this merged proposal.
2 When multiple declarations are provided for an entity, and only some of them are declared export, only the

semantic effects of the exported declarations are reachable outside the module. Under the Atom proposal,
export only controls name visibility, and all semantic effects in the module interface unit (and in module
partitions exported by it) are exported. The Atom rule intends to ensure that reordering declarations cannot
affect the exported semantics. However, applying that change to the Modules TS would interfere with its

§ 3.2 7

P1103R0

goal to always allow modules to always be defined in a single source file. The merged rule provides both
properties. The Atom rule is used for entities that are never exported.

3 The merged proposal supports global module fragments, which interferes with the Atom proposal’s goal of
making the preamble easy to identify and process with non-compiler tools. However, the benefits of the
Atom approach are still available to those who choose not to put code in the global module fragment.

4 Under the Atom proposal, we considered restricting the preprocessor constructs that may appear within the
preamble. In this merged proposal, the global module fragment is restricted to only containing #include
directives, but there are no restrictions on the contents of the included file as such restrictions would harm
the ability to put arbitrary code in the global module fragment, as required by the Modules TS’s legacy
header support.

5 The identifiers import and module are taken as keywords by the merged proposal, rather than making them
context-sensitive as proposed by the Atom proposal. This follows EWG’s direction on this question from
discussion of P0924R0.

6 The Atom proposal’s rule for export of namespace names has not been adopted, pending further discussion.
See 3.3.1.

7 The Atom rule for declaration reachability has been relaxed to allow declarations owned by modules to be
considered reachable even if the owning module is not reachable through a path of imports.

3.2.1 Atom features not merged [vs.atom.extra]
1 Two features of the Atom proposal were not presented at Jacksonville due to time constraints. Because these

features have not been discussed in Evolution, they are not part of the merged wording. They are:

—(1.1) public import declarations. These declarations provide a mechanism to re-export the semantic
properties of a module without re-exporting its introduced names. Such functionality is rendered mostly
unnecessary by the more liberal reachability rule used for entities owned by modules in the merged
proposal.

—(1.2) #export directives. These preprocessor directives provide a mechanism to export specific macros from
named modules. We anticipate further discussion on this topic in the context of P0877R0 and P0955R0.

3.3 Open questions [vs.open]
1 While performing the merge, we encountered a few issues for which we did not reach an agreement on the

superior answer and would like to solicit EWG input.

3.3.1 Namespace export [vs.open.namespace]
1 Under the Modules TS, all namespaces (excluding anonymous namespaces and those nested within them) that

are declared in a module interface unit have external linkage and are exported. Under the Atom proposal, all
such namespace names still have external linkage, but are only exported if they are either explicitly exported,
or if any name within them is exported. [Note: The Atom proposal permits implementation-detail namespace
names to be hidden from the interface of a module despite being declared in a module interface unit. —end
note]

2 [Example:
export module M;

export namespace A {} // exported in Atom, TS, and merged proposal
namespace B { // exported in Atom, TS, and merged proposal

export int n;
}
namespace C { // exported in TS and merged proposal, not in Atom

§ 3.3.1 8

P1103R0

int n;
}

—end example]

3.3.2 Lexing after import [vs.open.import.lex]
1 The Atom proposal introduces a change in the C++ lexing rules. After the import token, the preprocessor

attempts to form a header-name token where possible. This permits usage of normal header names:
import <foo.h>; // forms <foo.h> header-name token
import "bar\baz.h"; // forms "bar\baz.h" header-name token

2 It has been suggested that we instead require use of raw string literals for header names with escape sequences:
import R<foo.h>; // forms R<foo.h> token
import R"bar\baz.h"; // forms R"bar\baz.h" token

This avoids the need for a context-sensitive lexing rule, but introduces a new form of raw angled string literal,
and has a header-name syntax distinct from that used by a #include.

3.3.3 Syntax for non-exported declarations [vs.open.nonexport]
1 Following the Modules TS, the syntax for making a subset of the semantic properties of an entity reachable

is to omit the export keyword from some redeclarations:
export module M;
export struct S;
// ...
struct S { ... };

2 This is not completely satisfying:

—(2.1) the simplest syntax is reserved for a case that is relatively rare in many code bases, and definitions may
fail to be exported by accident

—(2.2) the fact that the definition of S is not exported is an important semantic property of the code, but the
code lacks a way to express that semantic property

—(2.3) unlike other specifiers affecting the linkage of an entity, export is not inherited by redeclarations

—(2.4) this behavior does not extend to entities where no declaration is exported

As an alternative, an explicit syntax could be used to specify that a declaration is excluded from the module
interface despite being in the module interface unit. As a possible syntax:

export module M;
export struct S;
export struct T;
struct U;
struct V;
// ...
struct S { ... }; // definition exported
noexport struct T { ... }; // definition not exported,

// despite T being exported
struct U { ... };
noexport struct V { ... };
export U *u(); // *u() has complete type in importers
export V *v(); // *v() has incomplete type in importers

§ 3.3.3 9

Part II

Wording for merging Atom into the Modules
TS

10

P1103R0

[Note: The wording given here is known to be incomplete, and not up to date with the design. —end note]

§ 3.3.3 11

P1103R0

1 Scope [intro.scope]
1 This document describes extensions to the C++ Programming Language (Clause 2) that introduce modules,

a functionality for designating a set of translation units by symbolic name and ability to express symbolic
dependency on modules, and to define interfaces of modules. These extensions include new syntactic forms
and modifications to existing language semantics.

2 ISO/IEC 14882 provides important context and specification for this document. This document is written as
a set of changes against that specification. Instructions to modify or add paragraphs are written as explicit
instructions. Modifications made directly to existing text from ISO/IEC 14882 use underlining to represent
added text and strikethrough to represent deleted text.

Scope 12

P1103R0

2 Normative references [intro.refs]
1 The following documents are referred to in the text in such a way that some or all of their content constitutes

requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.

—(1.1) ISO/IEC 14882:2017, Programming Languages – C++

ISO/IEC 14882:2017 is hereafter called the C++ Standard. The numbering of clauses, subclauses, and
paragraphs in this document reflects the numbering in the C++ Standard. References to clauses and
subclauses not appearing in this document refer to the original, unmodified text in the C++ Standard.

Normative references 13

P1103R0

3 Terms and definitions [intro.defs]
No terms and definitions are listed in this document.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https://www.iso.org/obp

— IEC Electropedia: available at http://www.electropedia.org

Terms and definitions 14

https://www.iso.org/obp
http://www.electropedia.org

P1103R0

4 General [intro]
4.1 Implementation compliance [intro.compliance]

1 Conformance requirements for this document are those defined in ISO 14882:2017, 4.1 except that references
to the C++ Standard therein shall be taken as referring to the document that is the result of applying the
editing instructions. Similarly, all references to the C++ Standard in the resulting document shall be taken
as referring to the resulting document itself. [Note: Conformance is defined in terms of the behavior of
programs. —end note]

4.2 Acknowledgments [intro.ack]
1 This document is based, in part, on the design and implementation described in the paper P0142R0 “A

Module System for C++”.

§ 4.2 15

P1103R0

5 Lexical conventions [lex]
5.1 Separate translation [lex.separate]
Modify paragraph 5.1/2 as follows

2 [Note: Previously translated translation units and instantiation units can be preserved individ-
ually or in libraries. The separate translation units of a program communicate (6.5) by (for
example) calls to functions whose identifiers have external or module linkage, manipulation of
objects whose identifiers have external or module linkage, or manipulation of data files. Transla-
tion units can be separately translated and then later linked to produce an executable program
(6.5). — end note]

5.2 Phases of translation [lex.phases]
Modify bullet 7 of paragraph 5.2/1 as follows:

7. White-space characters separating tokens are no longer significant. Each preprocessing
token is converted into a token (5.6). The resulting tokens are syntactically and semanti-
cally analyzed and translated as a translation unit. [Note: The process of analyzing and
translating the tokens may occasionally result in one token being replaced by a sequence
of other tokens (17.2). — end note] It is implementation-defined whether the source for

Before

module interface units for modules

After

module units

on which the current translation unit has an interface dependency (10.7.3) is required to be
available. [Note: Source files, translation units and translated translation units need not
necessarily be stored as files, nor need there be any one-to-one correspondence between
these entities and any external representation. The description is conceptual only, and
does not specify any particular implementation. — end note]

Add new paragraphs as follows:

2 The result of processing a translation unit from phases 1 through 7 is a directed graph called
the abstract semantics graph of the translation unit:

— Each vertex, called a declset, is a citation (10.7.3), or a collection of non-local declarations
and redeclarations (Clause 10) declaring the same entity or other non-local declarations of
the same name that do not declare an entity.

— A directed edge (D1, D2) exists in the graph if and only if the declarations contained in D2
declare an entity mentioned in a declaration contained in D1.

The abstract semantics graph of a module is

Before

the subgraph of the abstract semantics graph of its module interface unit generated by
the declsets the declarations of which are in the purview of that module interface unit.

§ 5.2 16

P1103R0

After

the subgraph of the abstract semantics graph of its module interface units generated by
the declsets the declarations of which are in the purview of those module interface units.

[Note: The abstract semantics graphs of modules, as appropriately restricted (10.7.6), are used
in the processing of module-import-declarations (10.7.3) and module implementation units. —
end note]

3 An entity is mentioned in a declaration D if that entity is a member of the basis of D, a set of
entities determined as follows:

— If D is a namespace-definition, the basis is the union of the bases of the declarations in its
namespace-body.

— If D is a nodeclspec-function-declaration,

— if D declares a contructor, the basis is the union of the type-bases of the parameter
types

— if D declares a conversion function, the basis is the type-basis of the return type
— otherwise, the basis is empty.

— If D is a function-definition, the basis is the type-basis of the function’s type

— If D is a simple-declaration

— if D declares a typedef-name, the basis is the type-basis of the aliased type
— if D declares a variable, the basis is the type-basis of the type of that variable
— if D declares a function, the basis is the type-basis of the type of that function
— if D defines a class type, the basis is the union of the type-bases of its direct base

classes (if any), and the bases of its member-declarations.
— otherwise, the basis is the empty set.

— If D is a template-declaration, the basis is the union of the basis of its declaration, the set
consisting of the entities (if any) designated by the default template template arguments,
the default non-type template arguments, the type-bases of the default type template ar-
guments. Furthermore, if D declares a partial specialization, the basis also includes the
primary template.

— If D is an explicit-instantiation or an explicit-specialization, the basis includes the primary
template, and all the entities in the basis of the declaration of D.

— If D is a linkage-specification, the basis is the union of all the bases of the declarations
contained in D.

— If D is a namespace-alias-definition, the basis is the singleton consisting of the namespace
denoted by the qualified-namespace-specifier.

— If D is a using-declaration, the basis is the union of the bases of all the declarations intro-
duced by the using-declarator.

— If D is a using-directive, the basis is the singleton consisting of the norminated namespace.

— If D is an alias-declaration, the basis is the type-basis of its defining-type-id.

— Otherwise, the basis is empty.

The type-basis of a type T is

— If T is a fundamental type, the type-basis is the empty set.

— If T is a cv-qualified type, the type-basis is the type-basis of the unqualified type.

— If T is a member of an unknown specialization, the type-basis is the type-basis of that
specialization.

— If T is a class template specialization, the type-basis is the union of the set consisting of
the primary template and the template template arguments (if any) and the non-dependent
non-type template arguments (if any), and the type-bases of the type template arguments
(if any).

§ 5.2 17

P1103R0

— If T is a class type or an enumeration type, the type-basis is the singleton {T}.
— If T is a reference to U , or a pointer to U , or an array of U , the type-basis is the type-basis

of U .

— If T is a function type, the type-basis is the union of the type-basis of the return type and
the type-bases of the parameter types.

— If T is a pointer to data member of a class X, the type-basis is the union of the type-basis
of X and the type-basis of member type.

— If T is a pointer to member function type of a class X, the type-basis is the union of the
type-basis of X and the type-basis of the function type.

— Otherwise, the type-basis is the empty set.

4 [Note: The basis of a declaration includes neither non-fully evaluated expressions nor entities
used in those expressions. [Example:

const int size = 2;
int ary1[size]; // size not in ary1’s basis
constexpr int identity(int x) { return x; }
int ary2[identity(2)]; // identity not in ary2’s basis

template<typename> struct S;
template<typename, int> struct S2;
constexpr int g(int);

template<typename T, int N>
S<S2<T, g(N)>> f(); // f’s basis: {S, S2}

— end example] — end note]

After

5.4 Preprocessing tokens [lex.pptoken]
Modify bullet 3 of paragraph 5.4/3 as follows:

Otherwise, the next preprocessing token is the longest sequence of characters that could
constitute a preprocessing token, even if that would cause further lexical analysis to fail,
except that a header-name (5.8) is only formed when the previous preprocessing token
was lexically identical to the identifier import, or within a #include directive (19.2).

5.11 Keywords [lex.key]
In 5.11, add these two keywords to Table 5 in paragraph 5.11/1: module and import.
Modify note in paragraph 5.11/1 as follows:

1 ...

[Note: The export and register keywords are is unused but are is reserved for future use. — end
note]

§ 5.11 18

P1103R0

6 Basic concepts [basic]
Modify paragraph 6/3 as follows:

3 An entity is a value, object, reference, function, enumerator, type, class member, bit-field, tem-
plate, template specialization, namespace, module, or parameter pack.

Modify paragraph 6/4 as follows:

4 A name is a use of an identifier (5.10), operator-function-id (16.5), literal-operator-id (16.5.8),
conversion-function-id (15.3.2), or template-id (17.2), or module-name (10.7) that denotes an
entity or label (9.6.4, 9.1).

Add a sixth bullet to paragraph 6/8 as follows:
– they are module-names composed of the same dotted sequence of identifiers.

6.1 Declarations and definitions [basic.def]
Modify paragraph 6.1/1 as follows:

1 A declaration (Clause 10) may introduce one or more names into a translation unit or redeclare
names introduced by previous declarations. If so, the declaration specifies the interpretation
and attributessemantic properties of these names. [...]

Append the following two bullets to paragraph 6.1/2:

2 A declaration is a definition unless

— ...
— it is an explicit specialization (17.7.3) whose declaration is not definition.,
— it is a module-import-declaration,
— it is a proclaimed-ownership-declaration.

[Example:

Before

import std.io; // make names from std.io available
export module M; // toplevel declaration for M
export struct Point { // define and export Point

int x;
int y;

};

After

export module M; // toplevel declaration for M
import std.io; // make names from std.io available
export struct Point { // define and export Point

int x;
int y;

};

§ 6.1 19

P1103R0

— end example]

6.2 One-definition rule [basic.def.odr]
Replace paragraph 6.2/1 with:

1 A variable, function, class type, enumeration type, or template shall not be defined where a prior
definition is reachable

Before

(6.4).

After

(10.7.6).

Modify opening of paragraph 6.2/6 as follows

6 There can be more than one definition of a class type (Clause 12), enumeration type (10.2), in-
line function with external or module linkage (10.1.6), inline variable with external or module
linkage (10.1.6), class template (Clause 17), non-static function template (17.5.6), static data
member of a class template (17.5.1.3), member function of a class template (17.5.1.1), or tem-
plate specialization for which some template parameters are not specified (17.7, 17.5.5) in a
program provided that each definition appears in a different translation unit no prior definition
is reachable

Before

(6.4)

After

(10.7.6)

at the point where a definition appears, and provided the definitions satisfy the following re-
quirements.

Before

For an entity with an exported declaration, there shall be only one definition of that entity;
a diagnostic is required only if the abstract semantics graph of the module contains a
definition of the entity. [Note: If the definition is not in the interface unit, then at most
one module unit can have and make use of the definition. — end note]

After

For an entity with an exported declaration, there shall be only one definition of that
entity; no diagnostic is required unless a prior definition is reachable at a point where a
later definition appears. [Note: If the definition is in a module implementation unit, then
the definition will only be reachable in that translation unit. — end note]

Given such an entity named D defined in more than one translation unit, then

§ 6.2 20

P1103R0

6.3 Scope [basic.scope]
6.3.2 Point of declaration [basic.scope.pdecl]
Add a new paragraph 6.3.2/13 as follows:

13 The point of declaration of a module is immediately after the module-name in a module-declaration.

6.3.6 Namespace scope [basic.scope.namespace]
From end-user perspective, there are really no new lookup rules to learn. The “old” rules are the “new” rules,
with appropriate adjustment in the definition of “associated entities.”
Modify paragraph 6.3.6/1 as follows:

1 The declarative region of a namespace-definition is its namespace-body. Entities declared in a
namespace-body are said to be members of the namespace, and names introduced by these
declarations into the declarative region of the namespace are said to be member names of the
namespace. A namespace member name has namespace scope. Its potential scope includes its
namespace from the name’s point of declaration (6.3.2) onwards; and for each using-directive
(10.3.4) that nominates the member’s namespace, the member’s potential scope includes that
portion of the potential scope of the using-directive that follows the member’s point of declara-
tion.

Before

If a name X (not having internal linkage) is declared in a namespace N in the purview
of the module interface unit of a module M , the potential scope of X includes the
portion of the namespace N in the purview of every module implementation unit of
M and, if the name X is exported, in every translation unit that imports M after a
module-import-declaration nominating M .

After

If a translation unit M is imported into a translation unit N , the potential scope of a
name X declared with namespace scope in M is extended to include the portion of the
corresponding namespace scope in N following the first module-import-declaration in N
that directly or indirectly nominates M if

— X does not have internal linkage, and

— X is declared after the module-declaration in M , and

— either M and N are part of the same module or X is exported.

[Example:

// Translation unit #1
export module M;
export int sq(int i) { return i*i; }

// Translation unit #2
import M;
int main() { return sq(9); } // OK: ’sq’ from module M

— end example]

§ 6.3.6 21

P1103R0

6.4 Name lookup [basic.lookup]
Modify paragraph 6.4/1 as follows:

1 The name lookup rules apply uniformly to all names (including typedef-names (10.1.3), namespace-
names (10.3), and class-names (12.1)) wherever the grammar allows such names in the context
discussed by a particular rule. Name lookup associates the use of a name with a set of declara-
tions (6.1) or citations (10.7.3) of that name. For all intent and purposes of further semantic
processing requiring declarations, a citation is replaced with the declarations contained in its
declset. [...] Only after name lookup, function overload resolution (if applicable) and access
checking have succeeded are the attributessemantic properties introduced by the name’s decla-
ration used further in the expression processing (Clause 8).

Before

Add new paragraph 6.4/5 as follows:

5 A declaration is reachable from a program point if it can be found by unqualified name
lookup in its scope.

6.4.2 Argument-dependent name lookup [basic.lookup.argdep]
Modify paragraph 6.4.2/2 as follows:

2 For each argument type T in the function call, there is a set of zero or more associated name-
spaces (10.3) and a set of zero or more associated classes entities (other than namespaces) to
be considered. The sets of namespaces and classes entities are determined entirely by the types
of the function arguments (and the namespace of any template template argument). Typedef
names and using-declarations used to specify the types do not contribute to this set. The sets
of namespaces and classes entities are determined in the following way:

— If T is a fundamental type, its associated sets of namespaces and classes entities are both
empty.

— If T is a class type (including unions), its associated classes entities are the class itself;
the class of which it is a member, if any; and its direct and indirect base classes. Its
associated namespaces are the innermost enclosing namespaces of its associated classes
entities. Furthermore, if T is a class template specialization, its associated namespaces
and classes entities also include: the namespace and classes entities associated with the
types of the template arguments provided for template type parameters (excluding template
template arguments); the templates used as template template arguments; the namespaces
of which any template template arguments are members; and the classes of which any
member template used as template template arguments are members. [Note: Non-type
template arguments do not contribute to the set of associated namespaces. — end note]

— If T is an enumeration type, its associated namespace is the innermost enclosing name-
space of its declaration, and its associated entities are T, and, if. If it is a class member, its
associated class is the member’s class; else it has no associated class.

— If T is a pointer to U or an array of U, its associated namespaces and classes entities are
those associated with U.

— If T is a function type, its associated namespaces and classes entities are those associated
with the function parameter types and those associated with the return type.

— If T is a pointer to a data member of class X, its associated namespaces and classes entities
are those associated with the member type together with those associated with X.

If an associated namespace is an inline namespace (10.3.1), its enclosing namespace is also
included in the set. If an associated namespace directly contains inline namespaces, those

§ 6.4.2 22

P1103R0

inline namespaces are also included in the set. In addition, if the argument is the name or ad-
dress of a set of overloaded functions and/or function templates, its associated classes entities
and namespaces are the union of those associated with each of the members of the set, i.e.,
the classes entities and namespaces associated with its parameter types and return type. Ad-
ditionally, if the aforementioned set of overloaded functions is named with a template-id, its
associated classes entities and namespaces also include those of its type template-arguments
and its template template-arguments.

Modify paragraph 6.4.2/4 as follows:

4 When considering an associated namespace, the lookup is the same as the lookup performed
when the associated namespace is used as a qualifier (6.4.3.2) except that:

— Any using-directives in the associated namespace are ignored.

— Any namespace-scope friend declaration functions or friend function templates declared
in associated classes in the set of associated entities are visible within their respective
namespaces even if they are not visible during an ordinary lookup (14.3).

— All names except those of (possibly overloaded) functions and function templates are ig-
nored.

— In resolving dependent names (17.6.4), any function or function template that is owned by
a named module M (10.7), that is declared in

Before

the

After

a

module interface unit of M, and that has the same innermost enclosing non-inline namespace
as some entity owned by M in the set of associated entities, is visible within its namespace
even if it is not exported.

6.5 Program and linkage [basic.link]
Change the definition of translation-unit in paragraph 6.5/1 to:

Before

translation-unit
toplevel-declaration-seqopt

toplevel-declaration-seq
toplevel-declaration
toplevel-declaration-seq toplevel-declaration

toplevel-declaration
module-declaration
declaration

§ 6.5 23

P1103R0

After

translation-unit:
preambleopt declaration-seqopt

preamble:
module ; declaration-seq module-declaration
module-declaration
preambleopt module-import-declaration

Insert a new bullet between first and second bullet of paragraph 6.5/2:
— When a name has module linkage, the entity it denotes can be referred to by names from

other scopes of the same module unit (10.7.1) or from scopes of other module units of that
same module.

Modify bullet (3.2) of paragraph 6.5/3 as follows:

— a non-inline non-exported variable of non-volatile const-qualified type that is neither ex-
plicitly declared extern nor previously declared to have external or module linkage; or

Modify paragraph 6.5/4 as follows:

4 An unnamed namespace or a namespace declared directly or indirectly within an unnamed
namespace has internal linkage. All other namespaces have external linkage. A name having
namespace scope that has not been given internal linkage above has the same linkage as the
enclosing namespace if itand that is the name of

— a variable; or
— a function; or
— a named class (Clause 12), or an unnamed class defined in a typedef declaration in which

the class has the typedef name for linkage purposes (10.1.3); or
— a named enumeration (10.2), or an unnamed enumeration defined in a typedef declaration

in which the enumeration has the typedef name for linkage purposes (10.1.3); or
— a template.

Before

has the same linkage as the enclosing namespace if

— said namespace has internal linkage, or

— the name is exported (10.7.2), or is declared in a proclaimed-ownership-declaration,
or is not being declared in the purview of a named module (10.7.1);

otherwise, the name has module linkage.

After

has its linkage determined as follows:

— if the enclosing namespace has internal linkage, the name has internal linkage;

— otherwise, if the declaration of the name is attached to a named module, is not
exported (10.7.2), and is not declared in a proclaimed-ownership-declaration or a
linkage-specification, the name has module linkage;

— otherwise, the name has external linkage.

§ 6.5 24

P1103R0

Modify 6.5/6 as follows:

6 The name of a function declared in block scope and the name of a variable declared by a block
scope extern declaration have linkage. If there is a visible declaration of an entity with linkage
having the same name and type, ignoring entities declared outside the innermost enclosing
namespace scope, the block scope declaration declares that same entity and receives the linkage
of the previous declaration.

Before

If that entity was exported by an imported module or if the containing block scope is in
the purview of a named module, the program is ill-formed.

If there is more than one such matching entity, the program is ill-formed. Otherwise, if no
matching entity is found, the block scope entity receives external linkage.

After

In either case, if the declared entity would be owned by a named module, the program is
ill-formed.

Modify paragraph 6.5/9 as follows:

9 Two names that are the same (Clause 9) and that are declared in different scopes shall denote
the same variable, function, type, template or namespace if

— both names have external or module linkage and are declared in declarations attached to
the same module2, or else both names have internal linkage and are declared in the same
translation unit; and

— both names refer to members of the same namespace or to members, not by inheritance,
of the same class; and

— when both names denote functions, the parameter-type-lists of the functions (11.3.5) are
identical; and

— when both names denote function templates, the signatures (17.5.6.1) ar the same.

If two declarations declaring entities (other than namespaces) and attached to different modules
introduce two names that are the same and that both have external linkage, the program is
ill-formed; no diagnostic required. [Note: using-declarations, typedef declarations, and alias-declarations
do not declare entities, but merely introduce synonyms. Similarly, using-directives do not
declare entities, either. — end note]

6.6 Start and termination [basic.start]
6.6.1 main function [basic.start.main]
Modify paragraph 6.6.1/1 as follows:

1 A program shall contain a global function called main

Before

declared in the purview of the global module.

2) This provision supports implementations where exported entities in different modules have different implementation
symbols. Conversely, for other implementations, exported entities have the same implementation symbols regardless of in
which module they are declared. Such implementations are supported for the time being by disallowing all situations where
the same names with external linkage might appear from different modules.

§ 6.6.1 25

P1103R0

After

owned by the global module.

§ 6.6.1 26

P1103R0

10 Declarations [dcl.dcl]
Add new alternatives to declaration in paragraph 10/1 as follows

declaration:
block-declaration
nodeclspec-function-declaration
function-definition
template-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition
empty-declaration
attribute-declaration
export-declaration
module-import-declaration
proclaimed-ownership-declaration

10.1 Specifiers [dcl.spec]
10.1.2 Function specifiers [dcl.fct.spec]
Add a new paragraph 10.1.2/7 as follows:

7 An exported inline function shall be defined in the same translation unit containing its export
declaration. [Note: There is no restriction on the linkage (or absence thereof) of entities that
the function body of an exported inline function can reference. A constexpr function (10.1.5) is
implicitly inline. — end note]

10.1.6 The inline specifier [dcl.inline]
Modify paragraph 10.1.6/6 as follows

6 Some definition for Aan inline function or variable shall be definedreachable in every translation
unit in which it is odr-used and the function or variable shall have exactly the same definition
in every case (6.5). [Note: A call to the inline function or a use of the inline variable may be
encountered before its definition appears in the translation unit. — end note] If the definition of
a function or variable appears in a translation unit before its first declaration as inline, the pro-
gram is ill-formed. If a function or variable with external or module linkage is declaredreachable
via an inline declaration in one translation unit, it shall be declaredreachable via an inline
declaration in all translation units in which it appearsis reachable; no diagnostic is required.
An inline function or variable with external or module linkage shall have the same address in
all translation units. [Note: A static local variable in an inline function with external or module
linkage always refers to the same object. A type defined within the body of an inline function
with external or module linkage is the same type in every translation unit. — end note]

10.3 Namespaces [basic.namespace]
Modify paragraph 10.3/1 as follows:

1 A namespace is an optionally-named declarative region. The name of a namespace can be used
to access entities declared in that namespace; that is, the members of the namespace. Unlike

§ 10.3 27

P1103R0

other declarative regions, the definition of a namespace can be split over several parts of one
or more translation units. A namespace with external linkage is always exported regardless
of whether any of its namespace-definitions is introduced by export. [Note: There is no way to
define a namespace with module linkage. — end note] [Example:

export module M;
namespace N { // N has external linkage and is exported
}

— end example]

10.3.3 The using declaration [namespace.udecl]
Modify paragraph 10.3.3/1 as follows:

1 Each using-declarator in a using-declaration introduces a set of declarations and citations into
the declarative region in which the using-declaration appears. The set of declarations and
citations introduced by the using-declarator is found by performing qualified name lookup (6.4.3,
13.2) for the name in the using-declarator, excluding functions that are hidden as described be-
low. If the using-declarator does not name a constructor, the unqualified-id is declared in the
declarative region in which the using-declaration appears as a synonym for each declaration or
citation introduced by the using-declarator. [...]

Add a new subclause 10.7 titled “Modules” as follows:

10.7 Modules [dcl.module]
10.7.1 Module units and purviews [dcl.module.unit]

Before

module-declaration:
exportopt module module-name attribute-specifier-seqopt ;

After

module-declaration:
exportopt module module-name module-partitionopt attribute-specifier-seqopt ;

module-name:
module-name-qualifier-seqopt identifier

After

module-partition:
: module-name-qualifier-seqopt identifier

module-name-qualifier-seq:
module-name-qualifier .
module-name-qualifier-seq identifier .

module-name-qualifier:
identifier

1 A module unit is a translation unit that contains a module-declaration. A named module is the
collection of module units with the same module-name.

§ 10.7.1 28

P1103R0

Before

A translation unit shall not contain more than one module-declaration.

A module-name has external linkage but cannot be found by name lookup.

2 A module interface unit is a module unit whose module-declaration contains the export keyword;
any other module unit is a module implementation unit.

Before

A named module shall contain exactly one module interface unit.

After

A named module shall contain exactly one module interface unit with no module-partition,
known as the primary module interface unit of the module.

After

3 A module partition is a module unit whose module-declaration contains a module-partition.
A named module shall not contain multiple module partitions with the same sequence of
identifiers in their module-partition. All module partitions of a module that are module
interface units shall be directly or indirectly exported by the primary module interface
unit (10.7.4). No diagnostic is required for a violation of these rules. [Note: Module
partitions can only be imported by other module units in the same module. The division
of a module into module units is not visible outside the module. — end note]

§ 10.7.1 29

P1103R0

After

4 [Example:

// TU 1
export module A;
export import :Foo;
export int baz();

// TU 2
export module A:Foo;
import :Internals;
export int foo() { return 2 * (bar() + 1); }

// TU 3
module A:Internals;
int bar();

// TU 4
module A;
import :Internals;
int bar() { return baz() - 10; }
int baz() { return 30; }

Module A contains four translation units:

— a primary module interface unit,

— a module partition A:Foo, which is a module interface unit forming part of the
interface of module A,

— a module partition A:Internals, which does not contribute to the external interface
of module A, and

— an implementation module unit providing a definition of bar and baz, which cannot
be imported because it does not have a partition name.

— end example]

5 A module unit purview starts at the module-declaration and extends to the end of the translation
unit. The purview of a named module M is the set of module unit purviews of M’s module units.

6 The global module is the collection of all declarations not in the purview of any module. By
extension, such declarations are said to be in the purview of the global module. [Note: The
global module has no name, no module interface unit, and is not introduced by any module-
declaration. — end note]

7 A module is either a named module or the global module.

Before

A proclaimed-ownership-declaration is attached to the module it nominates; any other
declaration is attached to the module in whose purview it appears.

§ 10.7.1 30

P1103R0

After

A declaration is attached to a module determined as follows:

— If the declaration is of a replaceable global allocation or deallocation function
(21.6.2.1, 21.6.2.2), it is attached to the global module.

— Otherwise, if the declaration is a namespace-declaration with external linkage, it is
attached to the global module.

— Otherwise, if the declaration is within a proclaimed-ownership-declaration, it is at-
tached to the module nominated by the proclaimed-ownership-declaration.

— Otherwise, if the declaration is within a linkage-specification, it is attached to the
global module.

— Otherwise, the declaration is attached to the module in whose purview it appears.

8

Before

For a namespace-scope declaration D of an entity (other than a namespace), if D is within
a proclaimed-ownership-declaration for a module X, the entity is said to be owned by X.
Otherwise, if D is the first declaration of that entity, then that entity is said to be owned
by the module in whose purview D appears.

After

An entity introduced at namespace scope is owned by the module to which its first
declaration is attached.

9 If a declaration attached to some module matches (according to the redeclaration rules) a reach-
able declaration

Before

from

After

attached to

a different module, the program is ill-formed. [Example:

§ 10.7.1 31

P1103R0

Before

// module interface of M
int f(); // #1
int g(); // #2, owned by the global module
export module M;
export using ::f; // OK: does not declare an entity
int g(); // error: matches #2, but appears in the purview of M
export int h(); // #3
export int k(); // #4

// other translation unit
import M;
static int h(); // error: matches #3
int k(); // error: matches #4

After

// module interface of M
module;
int f(); // #1
int g(); // #2, owned by the global module
export module M;
export using ::f; // OK: does not declare an entity
int g(); // error: matches #2, but appears in the purview of M
export int h(); // #3
export int k(); // #4

// other translation unit
import M;
static int h(); // error: matches #3
int k(); // error: matches #4

— end example]

10

Before

The subgraph of the abstract semantics graph G of a module M generated by the nodes of
G, excluding those introducing names with internal linkage, is available to name lookup
in the purview of every module implementation unit of M . The declsets made available
by the module-import-declarations in the purview of the module interface unit of M are
also available to name lookup in the purview of all module implementation units of M .

§ 10.7.1 32

P1103R0

After

A module-declaration that contains neither export nor a module-partition implicitly
imports the primary module interface unit of the module as if by a module-import-
declaration. [Example:

// TU 1
export module B;
import :Y; // OK, does not create interface dependency cycle
int n = y();

// TU 2
module B:X; // does not implicitly import B
int &a = n; // error: n not visible here
import B;
int &b = n; // OK

// TU 3
module B:Y; // does not implicitly import B
int y();

// TU 4
module B; // implicitly imports B
int &c = n; // OK

— end example]

10.7.2 Export declaration [dcl.module.interface]
export-declaration:

export declaration
export { declaration-seqopt }

1 An export-declaration shall only appear at namespace scope and only in the purview of a mod-
ule interface unit. An export-declaration shall not appear directly or indirectly within an un-
named namespace. An exported-declaration has the declarative effects of its declaration or its
declaration-seq (if any). An export-declaration does not establish a scope and shall not contain
more than one export keyword. The interface of a module M is the set of all export-declarations
in its purview.

2 In an export-declaration of the form

export declaration

the declaration

Before

shall be a module-import-declaration, or it

shall declare at least one name, and if that declaration declares an entity, the decl-specifier-seq
(if any) of the declaration shall not contain static. The declaration shall not be an unnamed-
namespace-definition or a proclaimed-ownership-declaration. [Example:

§ 10.7.2 33

P1103R0

Before

export int x; // error: not in the purview of a module interface unit
export module M;
namespace {

export int a; // error: export within unnamed namespace
}
export static int b; // error: b explicitly declared static.
export int f(); // OK
export namespace N { } // OK
export using namespace N; // error: does not declare a name

After

module;
export int x; // error: not in the purview of a module interface unit
export module M;
namespace {

export int a; // error: export within unnamed namespace
}
export static int b; // error: b explicitly declared static.
export int f(); // OK
export namespace N { } // OK
export using namespace N; // error: does not declare a name

— end example]

If the declaration is a using-declaration (10.3.3), any entity to which the using-declarator ulti-
mately refers shall have been introduced with a name having external linkage. [Example:

int f() // f has external linkage
export module M;
export using ::f; // OK
struct S;
export using ::S; // error: S has module linkage
namespace N {

int h();
static int h(int); // #1

}
export using N::h; // error: #1 has internal linkage

— end example]

[Note: Names introduced by typedef declarations are not so constrained. [Example:

export module M;
struct S;
export using T = S; // OK: exports name T denoting type S

— end example] — end note]

§ 10.7.2 34

P1103R0

After

3 The declaration in an export-declaration shall not be a redeclaration of a non-exported
declaration. [Example:

export module M;
export struct S;
struct S { int n; };
export typedef S S; // OK, not a redeclaration of struct S
export struct S; // error: exported declaration follows non-exported definition

— end example]

4 An export-declaration of the form

export { declaration-seqopt }

is equivalent to a sequence of declarations formed by prefixing each declaration of the declaration-
seq (if any) with export.

5 A namespace-scope

Before

or a class-scope

declaration lexically contained in an export-declaration, as well as the entities and the names it
introduces are said to be exported.

Before

The exported declarations in the interface of a module are reachable from any translation
unit importing that module.

[Note: Exported names have either external linkage or no linkage; see 6.5

After

Namespace-scope names exported by a module are visible to name lookup in any trans-
lation unit importing that module; see 6.3.6. Class and enumeration member names are
visible to name lookup in any context in which a definition of the type is reachable.

— end note] [Example:

// Interface unit of M
export module M;
export struct X {

void f();
struct Y { };

};

namespace {
struct S { };

}
export void f(S); // OK
struct T { };

§ 10.7.2 35

P1103R0

export T id(T); // OK

export struct A; // A exported as incomplete

export auto rootFinder(double a) {
return [=](double x) { return (x + a/x)/2; };

}

export const int n = 5; // OK: n has external linkage

// Implementation unit of M
module M;
struct A {

int value;
};

// main program
import M;
int main() {

X{}.f(); // OK: X and X::f are exported
X::Y y; // OK: X::Y is exported as a complete type
auto f = rootFinder(2); // OK
return A{45}.value; // error: A is incomplete

}

— end example]

6 [Note: Redeclaring a name in an export-declaration cannot change the linkage of the name
(10.1.1). [Example:

// Interface unit of M
export module M;
static int f(); // #1
export int f(); // error: #1 gives internal linkage
struct S; // #2
export struct S; // error: #2 gives module linkage
namespace {

namespace N {
extern int x; // #3

}
}
export int N::x; // error: #3 gives internal linkage

— end example] — end note]

7 Declarations in an exported namespace-definition or in an exported linkage-specification (10.5)
are implicitly exported and subject to the rules of exported declarations. [Example:

export module M;
export namespace N {

int x; // OK
static_assert(1 == 1); // error: does not declare a name

}

— end example]

§ 10.7.2 36

P1103R0

10.7.3 Import declaration [dcl.module.import]
Before

module-import-declaration:
import module-name attribute-specifier-seqopt ;

After

module-import-declaration:
exportopt import module-name attribute-specifier-seqopt ;
exportopt import module-partition attribute-specifier-seqopt ;
exportopt import header-name attribute-specifier-seqopt ;

1 A module-import-declaration shall appear only at global scope, and not in a linkage-specification
or proclaimed-ownership-declaration.

After

In a module unit, a module-import-declaration shall appear only within the preamble.

2

A module-import-declaration nominating a module M

After

imports all module interface units of M .

§ 10.7.3 37

P1103R0

After

3 A module-import-declaration nominating a module-partition shall only appear after the
module-declaration in a module unit in some module M . Such a declaration imports the
so-named module-partition of M .

4 A module-import-declaration nominating a header-name H behaves as if it imports a syn-
thesized legacy header unit, which is a module whose abstract semantics graph com-
prises the result of applying phases 1 to 7 of translation (5.2) to the source file nominated
by H, and treating all declarations therein as being exported and attached to the global
module. [Note: The legacy header unit for H is equivalent to

export module unique ;
export extern "C++" {
#include H
}

where unique is a module-name different from every module-name used in the program,
except that the linkage-specification cannot be terminated by an included } token. —
end note] Two module-import-declarations import the same legacy header unit if and
only if their header-names identify the same header or source file. [Note: A module-
import-declaration nominating a header-name is also recognized by the preprocessor, and
results in macros defined at the end of phase 4 of translation of the legacy header unit
being made visible as described in 19.3. — end note] Within a legacy header unit, certain
semantic restrictions are relaxed:

— A module-import-declaration may appear, and is considered to be exported.

— A declaration of a name with internal linkage is permitted despite all declarations
being implicitly exported. If such a name is odr-used by a translation unit outside
the legacy header unit, or by an instantiation unit for a template instantiation
whose point of instantiation is outside the legacy header unit, the program is ill-
formed.

5

After

Importing a translation unit M

makes every citation and every exported declaration from the abstract semantics graph of M
available, as a citation, to name lookup in the current translation unit, in the same namespaces
and contexts as in M .

After

If M is part of the same module as the importing translation unit, importing M also
makes every name declared in the purview of M that does not have internal linkage
visible to name lookup in the current translation unit, in the same namespaces and
contexts as in M .

Before

A citation for a declaration attached to a module M is a pair of M and the corresponding
declset from the abstract semantics graph of M .

§ 10.7.3 38

P1103R0

After

A citation for a declaration in a translation unit M is a pair of M and the corresponding
declset from the abstract semantics graph of M .

[Note: The declarations in the declsets and the entities denoted by the declsets are not rede-
clared in the translation unit containing the module-import-declaration. — end note]

After

6 [Note: A module-import-declaration also makes all declarations in the purview of the mod-
ule interface units of M reachable in the current translation unit, and may make decla-
rations from the preamble of M reachable in the current translation unit, as described
in 10.7.6. — end note]

[Example:

// Interface unit of M
export module M;
export namespace N {

struct A { };
}
namespace N {

struct B { };
export struct C {

friend void f(C) { } // exported, visible only through argument-dependent lookup
};

}

// Translation unit 2
import M;
N::A a { }; // OK.
N::B b { }; // error: ‘B’ not found in N.
void h(N::C c) {

f(c); // OK: ‘N::f’ found via argument-dependent lookup
N::f(c); // error: ‘f’ not found via qualified lookup in N.

}

— end example]

7

Before

A module M1 has a dependency on a module M2 if any module unit of M1 contains a module-
import-declaration nominating M2. A module shall not have a dependency on itself.

After

A module implementation unit of a module M that is not a module partition shall not
contain a module-import-declaration nominating M.

[Example:

module M;
import M; // error: cannot import M in its own unit.

§ 10.7.3 39

P1103R0

— end example]

8

Before

A module M1 has an interface dependency on a module M2 if the module interface of M1
contains a module-import-declaration nominating M2, or if there exists a module M3 such
that M1 has an interface dependency on M3 and M3 has an interface dependency on M2. A
module

After

A translation unit has an interface dependency on a module unit U in module M if it is
a module implementation unit of M and U is a module interface unit, or if it contains a
module-import-declaration nominating U, or if it has an interface dependency on a module
unit that has an interface dependency on U. A translation unit

shall not have an interface dependency on itself. [Example:

// Interface unit of M1
export module M1;
import M2;

// Interface unit of M2
export module M2;
import M3;

// Interface unit of M3
export module M3;
import M1; // error: cyclic interface dependency M3 -> M1 -> M2 -> M3

— end example]

Before

9 A translation unit has an interface dependency on a module M if it is a module implemen-
tation unit of M, or if it contains a module-import-declaration nominating M, or if it has an
interface dependency on a module that has an interface dependency on M.

10.7.4 Module exportation [dcl.module.export]
1

After

A module-import-declaration declared with export is exported, and shall only appear after
the module-declaration in the preamble of a module interface unit.

An exported module-import-declaration nominating a module M2 in the purview of a module inter-
face unit of a module M makes all exported names of M2 visible to any translation unit importing
M, as if that translation unit also contains a module-import-declaration nominating M2. [Note: A
module interface unit (for a module M) containing a non-exported module-import-declaration does
not make the imported names transitively visible to translation units importing the module M. —
end note] In addition to its usual semantics, a module-import-declaration nominating a module
M with a module interface unit containing one or more exported module-import-declarations also
behaves as if it nominates each module nominated by an exported module-import-declaration in
M ; this may in turn lead it to be considered to nominate yet additional modules.

§ 10.7.4 40

P1103R0

10.7.5 Proclaimed ownership declaration [dcl.module.proclaim]
proclaimed-ownership-declaration:

extern module module-name : declaration

1 A proclaimed-ownership-declaration shall only appear at namespace scope. It shall not appear
directly or indirectly within an unnamed namespace. A proclaimed-ownership-declaration has
the declarative effects of its declaration. The declaration shall declare at least one name, and the
decl-specifier-seq (if any) of the declaration shall not contain static. The declaration shall not be
a namespace-definition, an export-declaration, or a proclaimed-ownership-declaration. The decla-
ration shall not be a defining declaration (6.1). A proclaimed-ownership-declaration nominating
a module M shall not appear in the purview of M .

2 A proclaimed-ownership-declaration asserts that the entities introduced by the declaration are
exported by the nominated module. [Note: A proclaimed-ownership-declaration may be used to
break circular dependencies between two modules (in possibly too finely designed components.)
[Example:

// TU 1
export module Ty;
extern module Sym: struct Symbol;
export struct Type {

Symbol* decl;
// ...

};

// TU 2
export module Sym;
extern module Ty: struct Type;
export struct Symbol {

const char* name;
const Type* type;
// ...

};

— end example] — end note]

3 The program is ill-formed, no diagnostic required, if the nominated module in the proclaimed-
ownership-declaration does not export the entities introduced by the declaration.

10.7.6 Reachability [dcl.module.reach]
1 When declarations from the abstract semantics graph of a module M are made available to

name lookup in another translation unit T U , it is necessary to determine the interpretation of
the names they introduce and their semantic properties.

§ 10.7.6 41

P1103R0

After

2 A module unit is reachable from a program point if it appears in the purview of a module
unit that is directly or indirectly imported prior to that program point (10.7.3) by a path
of module-declarationsa and import-declarations, for which all declarations other than
the first are either exported or appear within the same module as the program point. A
declaration is reachable from a program point if

— it appears prior to that program point in the same translation unit, or

— it appears in the purview of a reachable module unit and either

— the declaration is exported, or

— the declaration is not exported and is not a redeclaration of an exported entity,
or

— the declaration appears in the same module as the program point,

or

— it appears in the preamble of a reachable module unit, and there is a path from an
exported declaration to it in the abstract semantics graph of that module unit.

A declaration is considered to appear in the same module as a program point if the
program point is in the purview of a module and the declaration appears within a module
unit of that module.

a) A module-declaration containing neither export nor a module-partition is considered to import the
named module.

3

Before

Except as noted below, the

After

The

reachable semantic properties of declset D (or of the entity, if any, denoted by that declset) of the
abstract semantic graph of M from T U are

Before

— if D contains at least one exported declaration, the semantic properties cumula-
tively obtained in the context of the exported declaration (10.7.2) members of D in
the module interface unit of M . Furthermore, if D denotes an inline function, the
property that the inline function has a definition (10.1.2) is a reachable semantic
property, even if that definition is not exported. Otherwise,

— the semantic properties cumulatively obtained in the context of all declaration
members of D in the module interface unit of M .

§ 10.7.6 42

P1103R0

After

the semantic properties of all reachable declarations in D. When the semantic properties
of an entity are examined, all properties that are reachable from the point of inquiry
are found, even if the declaration introducing the property is not visible to unqualified
lookup. [Example:

module;
struct X {};
export module A;
export using Y = X;

module B;
import A;
Y y; // OK, definition of X is reachable
X x; // ill-formed: X not visible to unqualified lookup

— end example]

4

[Note: These reachable semantic properties include type completeness, type definitions, initial-
izers, default arguments of functions or template declarations, attributes, visibility to normal
lookup,

Before

entities that are direct targets of edges emanating from D in the abstract semantics graph
of M ,

etc. Since default arguments are evaluated in the context of the call expression, reachable
semantic properties of the corresponding parameter types apply in that context. [Example:

§ 10.7.6 43

P1103R0

Before

// TU 1
struct F { int f { 42 }; };
export module M;
export using T = F;
export struct A { int i; };
export int f(int, A = { 3 });

export struct B; // exported as incomplete type
struct B { // definition not exported

operator int();
};
export int g(B = B{});
export int h(int = B{}); // #1

export struct S {
static constexpr int v(int);

};

export S j(); // S attendant entity of j()
constexpr int S::v(int x) { return 2 * x; }

// TU 2
import M;
int main() {

T t { }; // OK: reachable semantic properties of T include completeness.
auto x = f(42); // OK: default argument A{3} evaluated here.
auto y = h(); // OK: completeness of B only checked at #1.
auto z = g(); // error: parameter type incomplete here.
constexpr auto a = decltype(j())::v(3); // OK: S::v defined

// in the abstract semantics graph of M (10.1.2)
}

§ 10.7.6 44

P1103R0

After

// TU 1
module M:B;
struct B { // definition not exported

operator int();
};

// TU 2
module;
struct F { int f { 42 }; };
export module M;
import :B;
export using T = F; // earlier definition of F now reachable
export struct A { int i; };
export int f(int, A = { 3 });

export struct B; // exported as incomplete type
export int g(B = B{});
export int h(int = B{}); // #1

export struct S {
static constexpr int v(int);

};

export S j();
constexpr int S::v(int x) { return 2 * x; }

// TU 2
import M;
int main() {

T t { }; // OK: reachable semantic properties of T include completeness
auto x = f(42); // OK: default argument A{3} evaluated here
auto y = h(); // OK: completeness of B only checked at #1
auto z = g(); // error: parameter type incomplete here
constexpr auto a = decltype(j())::v(3); // OK: S::v defined

// in the abstract semantics graph of M (10.1.2)
}

— end example] — end note]

Before

5 Within a module interface unit, it is necessary to determine that the declarations being
exported collectively present a coherent view of the semantic properties of the entities
they reference. This determination is based on the semantic properties of attendant
entities. [Note: The reachable semantics properties of an entity, the declarations of
which are made available via a module-import-declaration, are determined by its owning
module and are unaffected by the importing module.

§ 10.7.6 45

P1103R0

Before

[Example:

// module interface of M1
export module M1;
export struct S { };

// module interface of M2
import M1;
export module M2;
export S f(); // #1
export S* g(); // #2

// elsewhere
import M2;
auto x = f(); // OK: completeness of S obtained at #1
auto y = *g(); // OK: completeness of S obtained at #2

— end example] — end note]

Before

For each declaration D exported from the module interface unit of a module M , there is
a set of zero or more attendant entities defined as follows:

— If D is a type alias declaration, then the attendant entities of D are those deter-
mined by the aliased type at the point of the declaration D.

— If D is a using-declaration, the set of attendant entities is the union of the sets of
attendant entities of the declarations introduced by D at the point of the declara-
tion.

— If D is a template declaration, the set of attendant entities is the union of the set
of attendant entities of the declaration being parameterized, the set of attendant
entities determined by the default type template arguments (if any), and the set
consisting of the entities (if any) designated by the default template template argu-
ment, the default non-type template arguments (if any).

— if D has a type T , the set of attendant entities is the set of attendant entities
determined by T at the point of declaration.

— Otherwise, the set of attendant entities is empty.

§ 10.7.6 46

P1103R0

Before

The set of attendant entities determined by a type T is defined as follows (exactly one of
these cases matches):

— If T is a fundamental type, then the set of attendant entities is empty.

— If T is a member of an unknown specialization, the set of attendant entities is the
set of attendant entities determined by that unknown specialization.

— If T is a class type owned by M , the set of attendant entities includes T itself, the
union of the sets of the attendant entities determined by its direct base classes
owned by M , the sets of the attendant entities of its data members, static data
member templates, member functions, member function templates, the function
parameters of its constructors and constructor templates. Furthermore, if T is a
class template specialization, the set of attendant entities also includes: the class
template if it is owned by M , the union of the sets of attendant entities determined
by the type template-arguments, the sets of the attendant entities of the templates
used as template template-arguments, the sets of the attendant entities determined
by the types of the non-type template-arguments.

— If T is an enumeration type owned by M , the set of attendant entities is the single-
ton {T}.

— If T is a reference to U , or a pointer to U , or an array of U , the set of attendant
entities is the set of attendant entities determined by U .

— If T is a function type, the set of attendant entities is the union of the set of atten-
dant entities determined by the function parameter types and the return type.

— if T is a pointer to data member of class X, the set of attendant entities is the union
of the set of attendant entities of the member type and the set of attendant entities
determined by X.

— If T is a pointer to member function type of a class X, the set of attendant entities is
the union of the set of attendant entities determined by X and the set of attendant
entities determined by the function type.

— Otherwise, the set of attendant entities is empty.

§ 10.7.6 47

P1103R0

Before

If a class template X is an attendant entity, then its reachable semantic properties in-
clude all the declarations of the primary class template, its partial specializations, and
its explicit specializations in the containing module interface unit. If a complete class
type X is an attendant entity, then its reachable semantic properties include the decla-
rations of its nested types but not the definitions of the types denoted by those members
unless those definitions are exported. Furthermore, if X is an attendant entity of an
exported declaration D, then its reachable semantic properties are restricted to those
defined by the exported declarations of X (if X is introduced by an exported declaration),
or by the semantic properties of X available at the point of the declaration D. [Note: If
X is a complete class type that is an attendant entity, its nested types (including nested
enumerations and associated enumerators) and member class templates are not consid-
ered attendant entities unless they are determined attendant entities by one of the rules
above. Attendant entities allow type checking of direct member selection of an object
even if that object’s type isn’t exported. Declarations, such as asm-declaration or alias-
declaration or static_assert-declaration, that do not declare entities do not contribute to
the set of attendant entities. — end note] [Example:

export module M;
export struct Foo; // Foo exported as incomplete type
struct Foo { };
export using ::Foo; // OK: exports complete type Foo

struct C { };
struct S {

struct B { };
using C = ::C;
int i : 8;
double d { };

};

export S f(); // S attendant entity of f().

// translation unit 2
import M;
int main() {

int x = sizeof(decltype(f())::B); // error: incomplete B
int y = sizeof(decltype(f())::C); // error: incomplete C
decltype(f()) s { };
s.d = 3.14; // OK
return &s.i != nullptr; // error: cannot take address of bitfield

}

— end example]

§ 10.7.6 48

P1103R0

Before

6 If X is an attendant entity of two exported declarations designating two distinct entities,
and X is declared in the purview of the global module, its reachable semantic properties
shall be the same at the points where the declarations occur. [Example:

export module M;
struct S;
export S f(); // #1
struct S { };
export S g(); // error: class type S has different properties from #1

— end example]

§ 10.7.6 49

P1103R0

12 Classes [class]
12.2 Class members [class.mem]
12.2.4 Bit-fields [class.bit]
Modify paragraph 12.2.4/1 as follows:

1 [...] The bit-field attributesemantic property is not part of the type of the class member. [...]

§ 12.2.4 50

P1103R0

16 Overloading [over]
16.5 Overloaded operators [over.oper]
16.5.8 User-defined literals [over.literal]
Modify paragraph 16.5.8/7 as follows:

7 [Note: Literal operators and literal operator templates are usually invoked implicitly through
user-defined literals (5.13.8). However, except for the constraints described above, they are
ordinary namespace-scope functions and function templates. In particular, they are looked up
like ordinary functions and function templates and they follow the same overload resolution
rules. Also, they can be declared inline or constexpr, they can have internal, module, or
external linkage, they can be called explicitly, their addresses can be taken, etc. — end note]

§ 16.5.8 51

P1103R0

17 Templates [temp]
Modify paragraph 17/2 as follows:

2 A template-declaration can appear only as a namespace scope or class scope declaration. Its
declaration shall not be an export-declaration or a proclaimed-ownership-declaration. In a func-
tion template declaration, the last component of the declarator-id shall not be a template-id.

17.6 Name resolution [temp.res]
17.6.4 Dependent name resolution [temp.dep.res]
Add new example to paragraph 17.6.4/1:

[Example:

// Header file X.h
namespace Q {

struct X { };
}

// Interface unit of M1

After

module;

#include "X.h" // global module
namespace Q {

void g_impl(X, X);
}
export module M1;
export template<typename T>
void g(T t) {

g_impl(t, Q::X{ }); // #1: ADL in definition context finds Q::g_impl
}

// Interface unit of M2

After

module;

#include "X.h"
import M1;
export module M2;
void h(Q::X x) {

g(x); // OK
}

— end example]

§ 17.6.4 52

P1103R0

Add new paragraphs to 17.6.4:

2 [Example:

// Interface unit of Std
export module Std;
export template<typename Iter>
void indirect_swap(Iter lhs, Iter rhs)
{

swap(*lhs, *rhs); // swap can be found only via ADL
}

// Interface unit of M

After

module;

import Std;
export module M;

struct S { /∗ ...∗/ };
void swap(S&, S&); // #1;

void f(S* p, S* q)
{

indirect_swap(p, q); // instantiation finds #1 via ADL
}

— end example]

3 [Example:

// Header file X.h
struct X { /∗ ... ∗/ };
X operator+(X, X);

// Module interface unit of F
export module F;
export template<typename T>
void f(T t) {

t + t;
}

// Module interface unit of M

After

module;

#include "X.h"
import F;
export module M;
void g(X x) {

f(x); // OK: instantiates f from F
// point of instantiation: just before g(X)

§ 17.6.4 53

P1103R0

}

— end example]

4 [Note: [Example:

// Module interface unit of A
export module A;
export template<typename T>
void f(T t) {

t + t; // #1
}

// Module interface unit of B
export module B;
import A;
export template<typename T, typename U>
void g(T t, U u) {

f(t);
}

// Module interface unit of C

After

module;

#include <string> // not in the purview of C
import B;
export module C;
export template<typename T>
void h(T t) {

g(std::string{ }, t);
}

// Translation unit of main()
import C;
void i() {

h(0); // ill-formed: ’+’ not found at #1
// point of instantiation of h<int>: just before ’i()’
// point of instantiation of g<std::string, int>: same as h<int>’s
// point of instantiation of f<std::string>: same as g<std::string, int>’s

}

— end example]

This example is ill-formed by this document. It is an open question as to how often the scenario
occurs in practice, and whether to make the example well-formed or whether additional syntax
will be introduced that does not involve modifying the header. — end note]

5 [Note: [Example:

// Module interface unit of M1

§ 17.6.4 54

P1103R0

After

module;

#include <algorithm>

export module M1;
export template<typename T, typename U>
void f(T& t, U& u) {

min(t, u); // #1
}

// Module interface unit of M2

After

module;

#include <locale>
struct Aux : std::ctype_base {

operator int() const;
};
void min(Aux&, Aux&); // #2

export module M2;
import M1;
export template<typename T>
void g(T t) {

Aux aux;
f(aux, aux);

}

// Elsewhere, translation unit of global module
import M2;
void h() {

g(0);
}

In the body of the function h, the call to g triggers a request for (implicit) instantiation of g<int>.
The point of instantiation of that specialization is right before the definition of h. That instan-
tiation, in turn, requests the implicit instantiation of f<Aux,Aux>. The point of instantiation of
that specialization immediately preceeds that of g<int>. In that context, the invocation of min:
(a) selects std::min; and (b) invokes the implicit conversion. In particular, the declaration at #2
is not used because it is neither available in the context of definition, nor in the context of in-
stantiation of f<Aux,Aux>. However, paragraph 17.6.4.2/1 of the C++ Standard formally renders
the behavior of the program undefined because the better match wasn’t considered. This is a
case where it is unclear if that paragraph is too broad and needs further restrictions, or if there
ought to be a mechanism to consider all such functions. — end example] — end note]

17.6.4.1 Point of instantiation [temp.point]
Replace paragraph 17.6.4.1/7 as follows:

7 The instantiation context of an expression that depends on the template arguments is the set of
declarations with external linkage declared prior to the point of instantiation of the template
specialization in the same translation unit.The instantiation context of an expression that

§ 17.6.4.1 55

P1103R0

depends on template arguments is the context of a lookup at the point of instantiation of the
enclosing template.

17.6.4.2 Candidate functions [temp.dep.candidate]
Modify paragraph 17.6.4.2/1 as follows

1 . . .

If the call would be ill-formed or would find a better match had the lookup within the associated
namespaces considered all the function declarations with external or module linkage introduced
in those namespaces in all translation units, not just considering those declarations found in
the template definition and template instantiation contexts, then the program has undefined
behavior.

§ 17.6.4.2 56

P1103R0

19 Preprocessing directives [cpp]
After

Modify paragraph 19/5 as follows:
5 The implementation can process and skip sections of source files conditionally, include

other source files, import macros from legacy header units, and replace macros. These
capabilities are called preprocessing, because conceptually they occur before translation
of the resulting translation unit.

19.2 Source file inclusion [cpp.include]
After

Add a new paragraph after 19.2/6 as follows:
7 If the header identified by the header-name denotes a legacy header unit,

the preprocessing directive is instead replaced by the preprocessing-tokens
import header-name ;

How the set of headers denoting legacy header units is specified is implementation-
defined.

§ 19.2 57

P1103R0

After

Add a new subclause 19.3 titled “Legacy header units” as follows:

19.3 Legacy header units [cpp.module]
pp-import:

exportopt importopt header-name pp-decl-suffixopt ;

pp-decl-suffix:
pp-decl-suffixopt pp-decl-suffix-token
pp-decl-suffixopt [pp-bracketed-tokens]

pp-decl-suffix-token:
any preprocessing-token other than [,], or ;

pp-bracketed-tokens:
pp-bracketed-tokensopt pp-bracketed-token
pp-bracketed-tokensopt [pp-bracketed-tokens]

pp-bracketed-token:
any preprocessing-token other than [or]

1 A sequence of preprocessing-tokens matching the form of a pp-import instructs the pre-
processor to import macros from the legacy header unit (10.7.3) denoted by the header-
name. The ; preprocessing-token shall not be produced by macro replacement (19.3).
The point of macro import for a pp-import is immediately after the ; terminating the pre-
processing preamble (see below) if the import occurs within the preprocessing preamble,
and immediately after the ; terminating the pp-import otherwise.

2 A macro directive for a macro name is a #define or #undef directive naming that macro
name. An exported macro directive is a macro directive occuring in a legacy header unit
whose macro name is not lexically identical to a keyword. A macro directive is visible at
a source location if it precedes that source location in the same translation unit, or if
it is an exported macro directive whose legacy header unit, or a legacy header unit that
transitively imports it, is imported into the current translation unit by a pp-import whose
point of macro import precedes that source location.

3 Multiple macro directives for a macro name may be visible at the same source location.
The interpretation of a macro name is determined as follows:

— A macro directive overrides all macro directives for the same name that are visible
at the point of the directive.

— A macro directive is active if it is visible and no visible macro directive overrides it.

— A set of macro directives is consistent if it consists of only #undef directives or if all
#define directives in the set are valid as redefinitions of the same macro.

When a preprocessing-token matching the macro name of a visible macro directive is en-
countered, the set of active macro directives for that macro name shall be consistent, and
semantics of the active macro directives determine whether the macro name is defined
and the behavior of macro replacement. [Note: The relative order of pp-imports has no
bearing on whether a particular macro definition is active. — end note]

§ 19.2 58

P1103R0

After

pp-preamble:
module pp-decl-suffix ;
pp-preamble exportopt import pp-decl-suffix ;

4 The preprocessing preamble of a translation unit is a sequence of preprocessing-tokens
beginning with the first module token that is neither preceded by extern (10.7.5) nor fol-
lowed by ;, and ending at the last ; token such that the preprocessing preamble forms a
pp-preamble. If there is no such module token, the translation unit has no preprocessing
preamble. Otherwise, if there is no such pp-preamble or if an import preprocessing-token
appears after the end of the preprocessing preamble, the program is ill-formed. Within
the preprocessing preamble, the tokens export and import shall not be produced by
macro replacement. [Note: The preamble always terminates with a semicolon token.
A #if directive immediately following the end of the preamble can expand macros im-
ported by a pp-import within the preamble; if that results in encountering additional
preprocessing-tokens matching the syntax of a pp-import, the preamble is not extended
to include those tokens because doing so would not form a valid preprocessing preamble.
[Example:

// macros.h
#define GOT_MACRO 1

// TU M
module M;
import "macros.h";
#if GOT_MACRO
import "other.h";
#endif

The preprocessing preamble ends at the ; of the first import. As a consequence, the pro-
gram is ill-formed because import "other.h"; appears after the preprocessing preamble.
The preprocessing preamble cannot extend to include the second import, because if it
did, the macro GOT_MACRO would not be defined in the context of the #if. — end example]
— end note]

§ 19.2 59

	I Commentary
	1 Background
	1.1 Introduction
	1.2 Stylistic conventions

	2 Summary of merged proposal
	2.1 Basics
	2.2 Module partitions
	2.3 Support for non-modular code
	2.3.1 Global module fragment
	2.3.2 Legacy header units
	2.3.3 Module use from non-modular code

	2.4 Templates

	3 Comparison to prior proposals
	3.1 Changes to the Modules TS
	3.2 Changes relative to the Atom proposal
	3.2.1 Atom features not merged

	3.3 Open questions
	3.3.1 Namespace export
	3.3.2 Lexing after import
	3.3.3 Syntax for non-exported declarations

	II Wording
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 General
	4.1 Implementation compliance
	4.2 Acknowledgments

	5 Lexical conventions
	5.1 Separate translation
	5.2 Phases of translation
	5.4 Preprocessing tokens
	5.11 Keywords

	6 Basic concepts
	6.1 Declarations and definitions
	6.2 One-definition rule
	6.3 Scope
	6.4 Name lookup
	6.5 Program and linkage
	6.6 Start and termination

	10 Declarations
	10.1 Specifiers
	10.3 Namespaces
	10.7 Modules

	12 Classes
	12.2 Class members

	16 Overloading
	16.5 Overloaded operators

	17 Templates
	17.6 Name resolution

	19 Preprocessing directives
	19.2 Source file inclusion
	19.3 Legacy header units

