
Simplify the customization point for structured bindings

Timur Doumler (papers@timur.audio)

Document #: P1096R0
Date: 2018-10-08
Project: Programming Language C++
Audience: Evolution Working Group

Abstract

In C++17, enabling structured bindings for a user-defined type requires implementing all of
std::tuple_element, std::tuple_size, and get. This is unnecessarily verbose, error-prone,
and hard to teach. In this paper, we show that std::tuple_element can safely be made optional,
therefore significantly simplifying the customization point for structured bindings.

1 Motivation
Structured bindings were introduced in C++17 as a convenient syntax to name the elements of
a “tuple-like” object instead of naming the whole object in an initializing declaration. Since then,
structured bindings became one of the most popular features of C++17.
Several extensions to this syntax have already been proposed, such as letting them introduce a
pack [P1061R0] and being able to mark them as static and constexpr [P1091R0]. Various other
extensions are possible. We expect usage of structured bindings to increase in the future.
Ideally, any type that is conceptually just a set of elements could be used with the structured
bindings syntax. Many types would greatly benefit from adding structured bindings support, for
example std::complex and std::chrono::year_month_day. Many more such types exist in user
code outside of the standard library.
Unfortunately, enabling structured bindings for such a type today requires implementing all of
std::tuple_element, std::tuple_size, and get. This customization point is unnecessarily
verbose, error-prone, and hard to teach.
In this paper, we show that std::tuple_element can safely be made optional. The type of the tuple
elements can easily be deduced from the decltype of get instead. This significantly reduces the
boilerplate that a user is required to write in order to enable structured bindings for a user-defined
type.

1

mailto:papers@timur.audio


2 Proposed solution
We propose to make the presence of std::tuple_element optional when constructing structured
bindings from a type for which std::tuple_size is defined. Whenever std::tuple_element is
present for such a type, it will be used to determine the types of the bindings, exactly as today. When
it is missing, instead of making the program ill-formed (situation today) the types of the bindings
will now be determined from the decltype of the get expression that is used as the initializer for
the binding in question (either e.get<i> or get<i>(e), depending on which declaration of get is
found by name lookup).
For the vast majority of use cases, this will result in the exact same types being deduced. There
is one exception where a subtle difference arises: tuple-like types containing elements of reference
type. Consider:

int n = 0;
std::tuple<int, int&> t{n, n};
auto& tref{t};
auto [i, iref] = tref;

When using std::tuple_element for determining the types of i and iref, they will be int and
int& respectively, preserving the distinction between reference-type tuple elements and elements of
a tuple decomposed by reference. However, when using get instead, this information would get lost:
decltype(std::get<0>(tref)) and decltype(std::get<1>(tref)) are both int&. The ability
to make this distinction was the reason that the std::tuple_element requirement was not removed
from the original design for C++17 [P0144R2].
Now that there is more experience with using structured bindings in practice, we argue that the
ability to make this distinction is only relevant in extremely rare cases. In fact, we are not aware of
any such case. It is certainly not necessary for perfect forwarding, since that always forwards a
reference anyway. We therefore believe that making std::tuple_element opt-in (and therefore
modifying the current rules) is a cheap price to pay considering that it will significantly simplify
structured bindings for everyone.
At the same time, we do not propose any changes to the existing std::tuple_element specializations
for std::tuple, std::pair, and std::array. This ensures that our proposed change can never
break, or change the behaviour of, existing C++ code.
If this proposal gets adapted, we will recommend library writers to always use the simpler cus-
tomization point by just defining std::tuple_size and get, unless they have a very good reason
to also define std::tuple_element.
An additional benefit of the change proposed here is that it makes the customization point of
structured bindings more consistent with that of std::apply, which already today requires only
std::tuple_size and get to be present. Our proposal would automatically enable structured
bindings for all types that support std::apply, even if they do not define std::tuple_element.

3 Further considerations
We also considered the possibility to make std::tuple_size optional, to simplify the customization
point even further. In theory, all the required information can be deduced from only a suitably defined
get and the number of declarators in the structured binding’s declarator-list. In practice however,
implementing this approach creates some complications for which we did not yet find satisfactory
solutions. Therefore, at this time we do not propose any changes to the way std::tuple_size
works.

2



4 Proposed wording
The proposed changes are relative to the C++ working paper [Smith2018].
Modify [dcl.struct.bind] paragraph 3 as follows:

Otherwise, if the qualified-id std::tuple_size<E> names a complete type, the expression
std::tuple_size<E>::value shall be a well-formed integral constant expression and
the number of elements in the identifier-list shall be equal to the value of that expression.
The unqualified-id get is looked up in the scope of E by class member access lookup
(6.4.5), and if that finds at least one declaration that is a function template whose first
template parameter is a non-type parameter, the initializer is e.get<i>(). Otherwise,
the initializer is get<i>(e), where get is looked up in the associated namespaces (6.4.2).
In either case, get<i> is interpreted as a template-id. [Note: Ordinary unqualified lookup
(6.4.1) is not performed. —end note ] In either case, e is an lvalue if the type of the
entity e is an lvalue reference and an xvalue otherwise. Given the type Ti designated
by std::tuple_element<i, E>::type if it names a type, otherwise by the decltype
of the initializer, variables are introduced with unique names ri of type “reference to Ti”
initialized with the initializer (11.6.3), where the reference is an lvalue reference if the
initializer is an lvalue and an rvalue reference otherwise. Each vi is the name of an lvalue
of type Ti that refers to the object bound to ri; the referenced type is Ti.

Acknowledgements
Many thanks to Herb Sutter, Ville Voutilainen, Peter Dimov, Tony Van Eerd, Tomasz Kamiński,
Arthur O’Dwyer, Jens Maurer, Barry Revzin, Gabriel Dos Reis, and Mathias Stearn for their very
helpful comments.

References

[P0144R2] Herb Sutter, Bjarne Stroustrup, and Gabriel Dos Reis. Structured bindings. http:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf, 2016.

[P1061R0] Barry Revzin and Jonathan Wakely. Structured Bindings can introduce a Pack. http:
//open-std.org/JTC1/SC22/WG21/docs/papers/2018/p1061r0.html, 2018.

[P1091R0] Nicolas Lesser. Extending structured bindings to be more like variable declarations.
http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p1091r0.html, 2018.

[Smith2018] Richard Smith. Working Draft, Standard for Programming Language C++. https:
//github.com/cplusplus/draft, 2018.

3

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p1061r0.html
http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p1061r0.html
http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p1091r0.html
https://github.com/cplusplus/draft
https://github.com/cplusplus/draft

	1 Motivation
	2 Proposed solution
	3 Further considerations
	4 Proposed wording
	References

