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1 Introduction

This is an unusual paper, being submitted concurrently to both to WG14 (C programming language)
as well as WG21 (C++ programming language). It originated from WG21 SG14 the Low Latency
study group, where most of our group would tend to work more frequently with C-ish code than
other WG21 members.

C++ is considering making its exception handling implementation value-based instead of type-based
in order to make it deterministic, see [P0709] Zero-overhead deterministic exceptions: Throwing
values. We could come up with some local-to-C++ solution, but I think we can do a lot better
by closing the gap between the C++ ABI and the C ABI such that C code will be able to legally
call, without intermediate bindings, C++ functions capable of throwing value-based exceptions (so
long as such functions do not receive nor return C-incompatible types). C code would directly
understand that a C++ function it called had failed � moreover, C code would be able to return
exception throws to C++ code.

If this coordination can be pulled o�, the bene�ts could be profound for all C speaking programming
languages, for example Rust, Python or Fortran. All these, being able to speak C, could directly
understand and generate C++ exceptions.

Outside of C++, there are substantial bene�ts for C as well, because we can extend the proposed
universal mechanism to allow individual functions to implement POSIX errno more optimally.
Speci�cally:

• The use of POSIX errno to indicate cause of failure introduces a lot of unhelpful side e�ects
both in C and C++, because it prevents some C standard library functions (the <tgmath.h>
functions especially) being marked as pure, which in turn inhibits more aggressive optimisa-
tion.

• The use of POSIX errno introduces a hard dependency on thread local storage, which in turn
forces million thread compute resources to not implement standard C for their compilers, as
transporting thread local storage to each CPU is impractical.

And �nally, this proposed mechanism makes it much easier for C to import Contracts from C++,
as a number of people on the WG14 re�ector appear keen to do, as the contract violation handler
can do something other than abort the program, which is very useful for unit test code ensuring
that contract violation is detected.
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2 Proposed Design: C

It is proposed that C add the following:

• A new function declaration and de�nition attribute fails(E), where E is a type. This modi�es
the type of the function to indicate that it has a di�erent calling convention to ordinary C
functions, speci�cally that now two channels of function return are possible, successful and
failure. Successful is the ordinary return type of the function (if any). Failure is the type E.

• A failure(expr) used to tell the compiler to return the evaluation of the expression via the
failure return channel, rather than via the success return channel.

• A catch(function(...)) which calls the speci�ed fails(E) marked function, emitting a
designated aggregate initialiser of a type matching the form
struct { union { T value; E error; }; _Bool failed; }; for a function of the form
fails(E) T funct(...).

To clarify what I mean here, if the function failed, catch() emits an aggregate initialiser with
the designates { .error = returned failed(expr), .failed = 1 } which is suitable for
initialising any aggregate type with members of error and failed. If the function succeeded,
catch() emits an aggregate initialiser with the designates
{ .value = returned value, .failed = 0 }. It is up to the programmer to de�ne some
type suitably matching this designated aggregate initialiser.

• A try(function(...)) is a convenience piece of boilerplate equivalent to:

1 struct { union { T value; E error; }; _Bool failed; } __unique_temporary = catch(function(...));
2 if(1 == __unique_temporary.failed)
3 {
4 return failure(__unique_temporary.error);
5 }

Writing the above boilerplate is very common in code with success and failure return channels,
and saving having to write it out by hand every time is user friendly.

It should be noted that all of the above are convenience macros to new underscoreCapital keywords,
as follows:

1 // Proposed <stdfails.h> header
2

3 #define fails(E) _Fails(E)
4 #define failure(expr) _Failure(expr)
5

6 #ifndef __cpluscplus
7

8 #define catch(f) _Catch(f) // catch extended at C++ language level
9 #define try(f) _Try(f) // try extended at C++ language level

10

11 #endif

Some may feel that the collision potential of these choices of naming is too high, however it is the
same mechanism which C99 <stdbool.h> uses, which macro de�nes bool to _Bool if not in C++.
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One might wonder why not return struct { union { T value; E error; }; _Bool failed; };

directly from the function? One can do this of course, however the fails(E) approach has a number
of advantages:

1. The C calling convention has the caller allocate the space for the returned value before call-
ing a function. union { T value; E error; } takes the size of whichever the bigger of
types T or E is, which is as optimal as it can be. However the additional discriminant in
struct { union { T value; E error; }; _Bool failed; }; could take up to eight addi-
tional bytes more than that, or worse, depending on packing. This may not seem like much,
but it is more than optimal.

For fails(E) returns, it is proposed for at least AArch64, ARM, x86 and x64, that the
discriminant be returned via the CPU's carry �ag. This is because compilers can often fold
the setting or clearing of the CPU's carry �ag into the ordering of other operations, thus
making this a zero runtime overhead choice of discriminant1. On other architectures such as
RISC-V (which has no status register), an extra register would make more sense. It doesn't
matter what an architecture chooses, so long as it is consistent across all compilers.

2. Calling a fails(E) function without wrapping it in either try() or catch() would be a
compile time error. This requires the caller to explicitly specify how to handle failure. We
could not be so enforcing with returns of the catch() output type as we cannot know what
the programmer meant.

An example of the proposed syntax:

1 int some_function(int x) fails(float)
2 {
3 // Return failure if x is zero
4 if(x != 0)
5 return 5;
6 else
7 return failure(2.0f);
8 }
9

10 fails(float) const char *some_other_function(int x)
11 {
12 // If calling some_function() fails, return its failure immediately
13 // as if by return failure(some_function(x).error)
14 int v = try(some_function(x));
15

16 return (v == 5) ? "Yes" : "No";
17 }
18

19 #define caught(T, E) struct caught_ ## T ## _ ## E { union { T value; E error; }; _Bool failed; }
20

21 int main(int argc, char *argv[])
22 {
23 if(argc < 2)
24 abort();
25

26 caught(const char *, float) v = catch(some_other_function(atoi(argv[1])));
27

1As it is a single bit being branched upon, status register update pipeline stalls should not occur.
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28 if(!v.failed)
29 {
30 printf("v is a successful %s\n", v.value);
31 }
32 else
33 {
34 printf("v is failure %f\n", v.error);
35 }
36 return 0;
37 }

And running this program would yield:

ned@lyta:~/windocs/boostish/wg21$ ./test 0

v is a failure 2.000000

ned@lyta:~/windocs/boostish/wg21$ ./test 1

v is a successful Yes

2.1 Extension: Purifying errno setting functions

A long time ago POSIX chose to return the cause of failure of a function by setting a then-global
variable errno. This has since become a thread-local variable, but the side e�ects of calling functions
which modify errno impedes optimisation, and makes impossible the use of standard C in very large
CPU core machines.

This particularly a�ects the C math functions. Let us take a simple example, making an integer
positive:

1 int myabs(int x)
2 {
3 if(x == INT_MIN)
4 {
5 errno = ERANGE;
6 return INT_MIN;
7 }
8 return (x < 0) ? -x : x;
9 }

This sets errno if it fails with the cause of failure, which prevents us from marking this functions
with __attribute__ ((pure)), or even __attribute__ ((const)). This means that the compiler
must assume that calling these functions has side e�ects on global state. That in turn greatly limits
the ability of the optimiser to perform common subexpression elimination and loop optimization on
code containing math functions, which is unfortunate.

I propose to �x this via an extension of fails(E), the fails_errno modi�er, which is expanded by
the compiler into boilerplate. So given this function:

1 int myabs(int x) fails_errno __attribute__((const))
2 {
3 if(x == INT_MIN)
4 {
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5 errno = ERANGE;
6 return INT_MIN;
7 }
8 return (x < 0) ? -x : x;
9 }

This is transformed by the compiler into as if:

1 inline int _Catchable_myabs(int x) fails(struct { int /*errno*/, int /*failure return value*/})
__attribute__((const))

2 {
3 if(x == INT_MIN)
4 {
5 // Do not set errno, return what it would be set to
6 return failure({ERANGE /*errno*/, INT_MIN /*failure return value*/});
7 }
8 return (x < 0) ? -x : x;
9 }

10

11 int myabs(int x)
12 {
13 caught(int, struct { int /*errno*/, int /*failure return value*/}) r = catch(_Catchable_myabs(x));
14 if(r.failed)
15 {
16 errno = r.error.errno;
17 return r.error.value;
18 }
19 return r.value;
20 }

I should stress the `as-if' nature of the above. In practice, myabs() would be generated with a
preamble and epilogue which sets real errno. If, and only if, myabs() is called by `new code' (see
below) would the setting of real errno be avoided by calling the function in a way which skips
that preamble and epilogue e.g. at some �xed o�set from the symbol, or by supplying a di�erent
return address etc. This allows existing backwards binary compatibility to be maintained such that
unrecompiled code can call newly compiled code, but allows code compiled with new compilers to
delay setting real errno.

2.1.1 Delay setting real errno in newly compiled code

The more useful part of this extension is what happens when we call a function marked fails_errno.

If in newly compiled code the compiler calls a function marked fails_errno, some more mechanistic
transformation is performed to delay the setting of real errno to as late as possible. Consider the
following code typical of any errno based failure detection:

1 errno = 0; // clear errno
2 int v = myabs(x); // call potentially failing function
3 if(errno != 0) // if errno non-zero, function failed
4 {
5 fprintf(stderr, "abs(x) failed with code %d\n", errno);
6 }
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Transformed code would be as if:

1 caught(int, {int /*errno*/, int /*failure return value*/}) r = _Catch(_Catchable_myabs(x));
2 int v;
3 if(!r.failed)
4 {
5 v = r.value;
6 }
7 else
8 {
9 // As we don’t know if fprintf() reads errno, cannot set errno

10 // any later than this unfortunately.
11 errno = r.error.__errno;
12 fprintf(stderr, "myabs(x) failed with code %d\n", errno);
13 }

But if fprintf() were also marked fails_errno ...

1 extern int fprintf(FILE *, const char *, ...) fails_errno;
2 ...
3 caught(int, {int /*errno*/, int /*failure return value*/}) r1 = _Catch(_Catchable_myabs(x));
4 int v;
5 if(!r1.failure)
6 {
7 v = r1.value;
8 }
9 else

10 {
11 caught(int, {int /*errno*/, int /*failure return value*/}) r2 = fprintf(stderr, "abs(x) failed with

code %d\n", r1.error.errno);
12 // Original code did not test for success/failure of fprintf,
13 // so do nothing here for now
14 }
15 ...
16 // Somewhere later in the function, set errno as late as
17 // is possible from the last executed fails_errno function
18 // in order to not violate current errno semantics
19 errno = r2.error.errno;

In other words, we are hoisting the setting of real errno out of the callee and into the caller, which
in turn may get hoisted even further up the call stack, ideally if possible to the main() function
such that real errno almost never gets read nor written at all.

One may have noticed that fails_errno functions have no means of reading errno. This is inten-
tional: functions which need to read errno could not have the fails_errno attribute applied to
them. In order to help trap reads of errno when porting existing code to fails_errno, I would
thus propose that the following be a compile error:

1 int func(...) fails_errno
2 {
3 // ERROR: "Illegal to read errno before writing it in a _FailsErrno function"
4 if(errno == 0) ...
5 }
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2.1.2 How to completely eliminate setting of real errno?

So far, we simply delay the setting of real errno by hoisting it as high as is possible out of the
execution graph. Some people will want real errno to never be set at all, thus guaranteeing purity
of functions, and thus maximum common subexpression elimination.

My proposal is that for functions marked fails_errno_invariant, real errno modi�cation is guar-
anteed elided by the compiler:

1 int func(...) fails_errno_invariant
2 {
3 ...
4 x = myabs(y);
5 if(errno != 0) // errno not actually modified, as per transformation above
6 {
7 ...
8 }
9 ...

10 // Safe to call extern errno setting functions if errno is saved
11 // and restored like this
12 int olderrno = errno;
13 fprintf(stderr, "Hi!\n");
14 errno = olderrno;
15 ...
16 // No lazy setting of real errno performed
17 }

All fails_errno_invariant does is to cause the compiler to skip lazily setting errno in any hoist.
It is on the programmer to not do anything which causes errno to become modi�ed on function
exit, as the compiler can hard assume that calling func(...) above will never modify errno.

3 Proposed Design: C++

This section is necessarily quite involved, as the C mechanism just proposed is calling convention
compatible with how I propose C++ implements [P0709] Zero-overhead deterministic exceptions:
Throwing values.

Given the WG14 audience, I will go into more detail than I normally would, for a purely WG21
targeted paper, regarding how C++ 20 currently works for those not familiar with modern C++.
Those not interested in C++ particulars can feel free to skip this section, though I have started from
�rst principles in order to ensure that no knowledge of the C++ standard is required to understand
this section.

3.0.1 Background: C-compatible types in C++

Before the C++ 20 standard retired the trait, there was a concept that C-compatible types in C++
matched a concept called Plain Old Data (POD). C++ 11 added a trait std::is_pod<T>, but `POD
types' were well established into the C++ programmer's vernacular long before C++ 11.
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In C++ 11 parlance, POD types are those which are (i) trivial (std::is_trivial<T>) and (ii) have
standard layout (std::is_standard_layout<T>).

Trivial types, in turn, are those which are (i) trivially copyable (std::is_trivially_copyable<T>)
and (ii) have a trivial default constructor (std::is_trivially_default_constructible<T>).

These subcategories of C-compatible types are important to understand, because while you may
not be able to construct many C++ types in C, you are able to legally pass a larger subset of
C++-only types through C. Such C++ types may thus be transported by C code via the proposed
C _Fails(T).

There are two speci�c subcategories of C++ types which C can transport safely:

1. Trivially copyable

• Every copy constructor is trivial or deleted.

• Every move constructor is trivial or deleted.

• Every copy assignment operator is trivial or deleted.

• Every move assignment operator is trivial or deleted.

• At least one copy constructor, move constructor, copy assignment operator, or move
assignment operator is non-deleted.

• Trivial non-deleted destructor.

As trivially copyable types must have a trivial destructor, C can copy such types without
concern, as destruction has no side e�ects.

2. Move relocating (if [P1029] SG14 [[move_relocates]], or an equivalent, is accepted)

• Copies can be non-trivial.

• Moves can be non-trivial, so long as moves are equal in e�ect to a memory copy of bytes
from source to destination, followed by memory copy of default constructed instance to
source.

• Destructor can be non-trivial, but must have no side e�ects when executed on a default
constructed instance.

As move relocating types have a destructor which is guaranteed by the programmer to have
no side e�ects when called on a default constructed instance, and that a moved-from instance
has the same representation as a default constructed instance, C can copy such types without
concern, even though it will not overwrite the source with a default constructed instance. This
is because C would never call C++ destructors in any case, so it does not matter if the source
is simply discarded.

The caveat here is that while move relocating types may pass through C code, they must
always return to C++ code before their life ends, otherwise it is unde�ned behaviour.
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3.0.2 Background: How C++ currently implements exceptions

C++ exception throws take the form of a throw expr. This causes the stack to be unwound until
a try wrapped statement block has a catch(type) matching the type of the value thrown. Types
are matched using a Run Time Type Information (RTTI) search, making them non-deterministic
as the RTTI in a process is unknowable in advance (and can change over time in a given running
process as shared libraries are loaded and unloaded).

Back in the 1990s, C++ exceptions were implemented by setting an unwind handler on entry to
each stack frame. When one threw an exception, the handler for each stack frame on the stack
would be executed in order to unwind the stack.

This setting up of unwind handlers per stack frame executed added a fair bit of overhead on the
CPUs of the late 1990s and early 2000s, so stack frame based handling was generally replaced
with table based handling instead, which has remained until now. At compile time, the compiler
generates a set of lookup tables for all C++ code compiled. When an exception is thrown, a runtime
library routine is called which uses the current instruction pointer and the stack frames on the stack
to look up in the EH tables which unwind handlers to invoke. This enables the successful code path
to execute with e�ectively zero runtime overhead, but at the cost of bloating the executable binary
with EH tables, and making the failure code path execution time highly non-deterministic.

However, CPU technology has marched onwards. The cost relative to CPU speed of scanning EH
tables during a stack unwind has risen exponentially over what it was in the early 2000s, as such
tables are inevitably in cold memory out of cache (and sometimes even paged out, on disc), and
thus each table entry access costs at best hundreds of CPU cycles. One naïve benchmark puts the
average lower bound cost at approximately 2,000 CPU cycles per stack frame unwound2. Upper
bounds tend into the hundreds of milliseconds on a machine with limited free RAM, due to page
faulting in the EH tables.

C++ has also moved closer to the hardware within the technology stack since the early 2000s.
It is not commonly used as a general purpose application programming language in new projects
where indeterminacy is acceptable; for new projects it is increasingly going into use cases where
determinacy for both success and failure is paramount (reliability critical systems such as car self
driving), and where the executable bloat generated by the EH tables is considered unacceptable
(the embedded domain is the obvious one).

Finally, modern CPUs now tend to speculatively execute out-of-order rather than the in-order
mechanism of earlier CPUs. Adding explicit checks for whether an exception has been thrown to
the successful code path is now usually free of cost on such CPUs, as stalls in other parts of the
pipeline will block the CPU, thus leaving idle spare CPU execution units. As much as it might
be tempting to return to the stack frame based handling approach, modern CPUs prefer potential
jumps to known branches, rather than potential jumps to unknown installed unwind handlers, as
the former suit their branch predictors better. Thus was born [P0709] Zero-overhead deterministic
exceptions: Throwing values, which recognises that the hardware has changed, and the typical use
cases for C++ in new code have changed.

2Source: https://ned14.github.io/outcome/faq/#what-kind-of-performance-benefits-will-using-outcome-in-my-code-bring.
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In P0709, lightweight exception throwing functions are separated from legacy exception throwing
functions via a throws modi�er. Here are some examples:

1 // May throw legacy type based exceptions
2 extern int func(int);
3

4 // Never throws any exception (noexcept was added in C++ 11)
5 extern int func(int) noexcept;
6

7 // May throw new value based exceptions, proposed by P0709
8 extern int func(int) throws;

3.0.3 Background: std::expected<T, E>

[P0323] std::expected is in the �nal stages of standardisation, and it proposes a standard A-or-B
sum type for C++. This vocabulary type provides:

• An observer (.has_error()) to check whether it contains a value (T) or an error (E).

• An observer to access the value, if present (.value()).

• An observer to access the error, if present (.error()).

[P0786] ValuedOrError and ValueOrNone types proposes a C++ Concept ValueOrError which
matches all types providing at least the observer interface listed above. The expectation is that
types able to consume ValueOrError concept matching types would provide constructors which do
so. One such type, obviously enough, would be std::expected<T, E> itself which would construct
from any ValueOrError<T, E> concept match.

3.0.4 Background: The current proposed mechanism for deterministic C++ excep-

tions

It is legal in the current type throwing system to throw a non-copyable, non-movable type, and
during unwind to throw lots more of them, which forces compiler implementers into some amazing
gymnastics in order to meet the requirements of the C++ standard that this works correctly.
Compiler implementers therefore must use extremely conservative implementations which are non-
deterministic (e.g. dynamically allocating memory), in order to cope with what is a very rare, and
barely used, use case.

One of the key proposals of P0709 is that the new exception throw mechanism throw values,
not types, and that the only type throwable under the new lightweight mechanism would be a
std::error which is de�ned to be no more than two CPU registers in size, and either move relo-
cating or trivially copyable. This guarantees to the compiler that thrown values can be hoisted up
the stack frame during an unwind exclusively using CPU registers, something which enormously
simpli�es implementation for compiler vendors, and which ought to lend itself well to aggressive
optimisation.

P0709 in its current form could be read as meaning that std::error is a lightweight token to opaque,
possibly reference counted or thread locally stored, state containing the `real' exception state. If a
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token, it would permit std::uncaught_exceptions() to work as at present, and for throws of type
based exceptions to use the value based unwind mechanism, rather than EH tables.

This would achieve most of the stated aims of the P0709 paper (elimination of EH table bloat,
deterministic exception throws most of the time), and has obvious attractions for source code
backwards compatibility � one is e�ectively throwing around std::exception_ptr instances which
are well understood, and existing code is already using (see below for more detail).

However, in my opinion, a token-based deterministic exceptions implementation is insu�ciently
zero overhead or deterministic to warrant the title of the proposal paper. I therefore give additional
background on SG14 low latency study group's alternative, hard deterministic, proposed std::error
design.

3.0.5 Background: The alternative proposed mechanism for deterministic C++ ex-

ceptions

P0709 does suggest an alternative mechanism to throwing tokens to opaque exception state, and
that is to throw the whole exception state in the value with no linked opaque data at all. Under this
scheme, std::error is merely the default exception state type consisting of two CPU register sized
members (the �rst is a pointer to a constexpr explanatory domain which inlines itself readily, the
second is a code with meaning to that domain). If one annotates a function with merely throws,
then that function deterministically throws std::error and nothing else. If one however annotates
a function with throws(T), then that function deterministically throws T instead.

This may seem like reintroduction of the hated dynamic exception speci�ers, which were only just
recently excised from the language [N3051]. These caused the program to terminate if the throw
of an exception reached an exception speci�cation boundary where the type of that throw was not
listed. As one of the main use cases for the C++ exception mechanism is to throw more expressive
locally de�ned types re�ned from public types, and for catch clauses to catch the most expressive
type it knows about, this made dynamic exception speci�ers useless in real world code. They also
added extra runtime overhead, as they were checked at runtime. For all these reasons, they were
removed from the C++ 17 standard, and rightly so.

The di�erence with throws(T) is that T's compatibility is checked at compile time, not at run time.
It would be required that if foo() throws(X) calls boo() throws(Y), that Y be convertible to X,
otherwise it will not compile. This, in combination with the value-based rather than type-based
polymorphism explained below, makes these `static exception speci�cations' a very di�erent thing
to dynamic exception speci�cations3.

SG14's proposed design for std::error in [P1028] SG14 status_code and standard error object for
P0709 Zero-overhead deterministic exceptions leverages these `static exception speci�cations'. Un-
der this, std::error is merely one of a family of possible status_code types, all of whom can speak
to one another, and which can implicitly decay themselves into a std::error on demand. Thus, if

3Note that throws(E1, E2, ...) is explicitly NOT supported for proposed static exception speci�cations. Any
failure polymorphism must be encoded via the value, not via the type, same as with the proposed C fails(E) which
exactly mirrors proposed C++ throws(E). This may seem harsh, but note that P1028 provides a bundled value-based
polymorphism infrastructure in the standard library.
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this true value-based direction were chosen by WG21 instead of some token-based mechanism, all
types T1 in a custom throws(T1) would be required to be convertible into the caller's throws(T2)
(which would usually be std::error), and be trivially copyable or move relocating.

One might wonder what the gain would be to permit custom throws(T) when it is required that
T will decay to (usually) std::error on demand? The main use case is for very high performance
code where constructing a std::error, with its probable unavoidable indeterminacy4, is too un-
predictable or expensive. A piece of code may therefore use a custom throws(T) perhaps with
added (low latency) payload locally, and if the failure is not handled locally, then and only then is
a std::error lazily constructed, perhaps requiring dynamic memory allocation to store the added
payload. This keeps non-deterministic failure handling away from high performance code, and you
can �nd an example of this design pattern in action in [P1031] Low level �le i/o. It is analogous
to how fails_errno described earlier works by hoisting the expensive operation up to the caller or
the caller's caller.

Another key part of P1028 is semantic comparison where it is possible to compare any arbitrary
std::error value to any other, and equivalence is true when they semantically, rather than lit-
erally, match. This allows an implementation to fail with some platform-speci�c error code, per-
haps even with a non-public internal domain, retaining all the original information unmodi�ed
and untranslated, yet code further up the call stack can compare the std::error value to say
std::errc::no_such_file_or_directory, and if the platform-speci�c failure is one of not �nding
a �le or directory, the comparison will return true. Usefully, the programmer may decide to dynam-
ically allocate memory for the payload and store the pointer to that allocation in the code �eld, and
use a custom explanatory domain which `unpacks' that payload as needed in the semantic compar-
ison. Thanks to semantic comparison, one doesn't need to care about implementation details � one
just compares std::error values, and it all `just works'.

As one can infer, this is value-based polymorphism rather than type-based polymorphism, and
P1028's semantic comparison mechanism always executes in constant time rather than the unknow-
able time of a RTTI search. Instead of placing indeterminism into opaque data structures, it exposes
the full implementation of deterministic exceptions to the developer, permitting them to choose
where and when to introduce dynamic memory allocation or other sources of non-determinism.
This is why this alternative mechanism is SG14's preferred �xed latency choice of implementation
for P0709.

3.0.6 Background: std::error_code

If the P1028 alternative mechanism sounds a bit familiar to some people, it is because it is a superset
of the very well understood std::error_code which has shipped in the C++ standard library since
C++ 11, and well before that in the form of Boost.System. P1028 status_code has the following
improvements over std::error_code:

1. Can represent warnings and informational codes, as well as failure codes.

4In order to implement std::uncaught_exceptions(), one would have to increment a cold cache thread locally
stored reference count. Debuggers probably would also need to be triggered, as all mainstream debuggers o�er the
ability to break on exception throw. Some runtimes may also wish to capture a stack backtrace.
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2. Ambiguities and some legacy cruft in some parts of std::error_code have been eliminated
e.g. std::error_code provides both semantic and literal comparisons via operator==, and it
is not obvious from inspection of code which is in play in a given piece of code. P1028 always
uses semantic comparisons between dissimilar code domains, thus eliminating the ambiguity.

3. Safe to use custom domains in header only libraries which are included into shared libraries,
unlike custom categories for std::error_code where semantic comparison randomly stops
working silently, thus making custom categories unsafe in header only libraries.

4. Domain de�ned code and payload type, rather than the sole int which std::error_code

provides. Indeed, P1028 wraps all possible std::error_code's into itself by a domain which
de�nes a code type of std::error_code, see below.

5. Reduced runtime overhead through maximum use of constexpr, including the new constexpr
virtual functions added to C++ 20.

6. Backwards compatible with std::error_code, in that any std::error_code can be wrapped
into a status_code with complete preservation of the original code, and with its semantic
comparison mapped into status_code's semantic comparison.

7. Including its implementation does not drag in most of the standard library as a dependency,
as is currently the case for std::error_code.

8. Prewritten domains are supplied for generic, POSIX, Win32, NT kernel, Microsoft COM and
std::error_code codes, with pregenerated semantic comparison mappings between each.

3.0.7 Background: std::exception_ptr

C++ 11 introduced a smart pointer std::exception_ptr which refers to a previously thrown C++
exception object. It can be rethrown, examined later, etc. Under deterministic exceptions, if
implemented via the SG14 proposed std::error, std::exception_ptr would become a pointer to
a type-based exception throw only5, and could be used to convert a non-deterministic type-based
exception throw into a deterministic value-based exception throw via wrapping the legacy throw
into a std::exception_ptr, and transporting that via a throw of std::error.

P1028, when combined with P1029 SG14 [[move_relocates]] or equivalent, permits std::exception_ptr
instances to be thrown directly, wrapped into a custom domain which provides the semantic mapping
of whatever is stored by the exception pointer against other std::error instances. Thus, a legacy
exception throw of a complex type could be erased into a std::exception_ptr, thrown upwards un-
winding the stack using the value-based lightweight system, and caught in a catch handler exactly as
at present. The semantic comparison feature works exactly as expected with std::exception_ptr

instances, if they are an instance of a standard library exception type. This can provide perfect
source compatibility with existing code, but eliminating EH table bloat entirely in executables for
those C++ users happy to forgo binary compatibility with binaries built by earlier C++ compilers.

5There is no point erasing types compatible with SG14 proposed std::error into an std::exception_ptr, as they
are not an exception type. Throwing a type convertible into SG14 proposed std::error is actually control �ow, and
only the throw of std::error itself is an exception throw. I will try to write a paper speci�cally on this topic soon,
hopefully before the Kona meeting.
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It is expected that most compiler vendors would provide a compile time switch which lets end users
choose between EH table bloat with backwards binary compatibility, or no EH table bloat and loss
of backwards binary compatibility.

3.0.8 How C++ function linkage would work using proposed fails(E)

We have established that whether token or value based, the proposed std::error object would be
trivially copyable or move relocating, and �t into no more than two CPU registers. As explained
above, this means that a std::error instance can safely pass through C code, and may often be
entirely legal for C to construct and manipulate, depending on its domain.

I therefore propose that for all C++ functions with a throws(X) modi�er indicating that they
throw values of type X using the lightweight mechanism, these would map onto a function with a C
representation and calling convention of fails(X).

If the modi�er is without type i.e. throws, that would map onto a function with a C representation
of fails(struct cxx_std_error), which would be de�ned as:

1 struct cxx_std_error
2 {
3 void *domain;
4 intptr_t code;
5 };

The above structure is exactly the layout and composition of SG14's proposed std::error (which
has standard layout, and so can be cast to the above C structure legally in C++).

C++ functions marked noexcept would always map onto non-fails C representations.

And �nally, C++ functions with legacy C++ throw potential would be down to compiler switches
to choose form of calling convention, as per the discussion of potential implementation options in
P0709.

As one can see, this makes the only di�erence between C fails(X) and C++ throws(X) one of auto-
propagation. Not explicitly handling calling a C fails(X) function by using either try(function(...))
or catch(function(...)) is a compile time error, whereas not explicitly handling calling a C++
throws(X) function means that the compiler silently inserts an as-if try(expr), thus causing un-
handled failure to auto-propagate to the caller.

It is proposed that in C++, you can call a C++ throws(X) function with C try() or C catch(), if
you would like (note that in C++, try() and C catch() can accept complex expressions, whereas
in C they only accept just the function call).

It is proposed that you can also call a C fails(X) function from C++ without a C try(expr) or
C catch(expr). This would cause failure by a C function to manifest as if a deterministic C++
exception of type X had been thrown, where the type X must be convertible into the calling function's
throws(Y) (see below for how to handle calls of fails_errno C functions from C++).

Given this equivalence mapping of fails(X) and throws(X) onto one another, we can demonstrate
some examples of C++ to C linkage equivalences:
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C++ C

extern int func(double) throws; extern int _Z4funcd(double) fails(struct cxx_std_error);
extern int func(double) throws(char *); extern int _Z4funcd(double) fails(char *);
extern double func(int) noexcept; extern double _Z4funci(int);

3.0.9 C++ calling fails_errno C functions

P1028 provides a speci�c constructor of std::error for POSIX error codes, posix_code(int). So
I would propose that for C++ functions marked throws or throws(E) which call a fails_errno

function which fails, the returned code is automatically propagated as a throw of std::error

constructed by posix_code(errno code).

I would love if type-based exception throwing C++ functions and noexcept C++ functions could
do the same. However, for existing source compatibility, they cannot. I therefore propose that for
those kinds of C++ function, the real errno setting avoidance technique described in section 2.1.2
is used.

A number of people have asked how a C++ throws function would go about calling a C fails_errno

without it throwing a deterministic exception. The answer is `exactly as how you would with any
other function' e.g.:

1 extern "C" fails_errno int myabs(int x);
2 ...
3 std::string func(int x) throws
4 {
5 std::expected<int, std::error> r = catch(myabs(x));
6 return r ?
7 std::to_string(r.value()) :
8 std::string("failed to myabs due to ") + r.error().message();
9 }

4 Frequently Asked Questions

4.1 How interchangeable for one another are the proposed C and C++ facili-

ties?

C fails(E) can be exchanged for C++ throws(E), with the only di�erence being that calling
a fails(E) function does not auto-propagate failure to its caller, and thus requires wrapping its
invoking expression with either catch(...) or try(...).

C return failure(expr); can be swapped for C++ throw expr;, but only in a throws(E) func-
tion.

C++ std::expected<A, B> would gain the ability to implicitly construct from the aggregate ini-
tialiser which catch() expands into.

C catch(function(...)) would when used in C++ permit the more generalised catch(expr).

C try(function(...)) would when used in C++ also permit the more generalised try(expr).
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