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Abstract

This paper proposes a more concise way to specify the same set of constraints that result from
requirements of the following form: E; requires Concept<decltype((E)), Args...>;. The
current return-type-requirement ([expr.prim.req.compound]) is demonstrated to be insufficient to
the task.

Nobody puts constraints on God. She doesn’t like it.
— ANDREW GREELEY

Деспотизм ограничения только помогает достичь точности исполнения.
(The despotism of a constraint helps only to achieve accuracy of execution.)

— IGOR FYODOROVICH STRAVINSKY

1 Introduction

Issue 121 (“Add same-type constraints for expressions”) of the now-retired C++ Concepts Issues
List was opened in 2015 in response to a national body comment on the then-nascent Concepts
TS.

• The issue first observes that we have concepts notation “to specify (via the trailing-return-
type notation ->) that a constraint is satisfied iff an expression E is convertible to a type
T.”2

• Then, the issue proposes that “It would be very useful to have . . . constraints that are
satisfied iff decltype(E) is exactly the type T.”

• Finally, to address the above perceived need, the issue suggests to “Introduce new notation
(e.g., E => T) to denote a constraint that is satisfied iff the expression E has precisely the
type T.”

Copyright c© 2018 by Walter E. Brown. All rights reserved.
1See http://cplusplus.github.io/concepts-ts/ts-closed.html#12.
2At the time, such notation was specified in subclause 14.10.1.1 [temp.constr.conv].
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According to that issues list, the NB comment-cum-issue was at the time treated as an
extension request and sent to EWG for triage. In turn, EWG declared that it was “not in favor of
adding this feature.”

Today, with more than three years of additional experience in the development and use of
concepts, we believe it is time to revisit this issue and propose a generalization of the above issue’s
same-type constraint. In particular, experience with the Ranges TS draft [N4382] and follow-on
papers (e.g., [P0898R0]) strongly suggests that we need a more concise way to specify the same
set of constraints that result from the following requirements:

E; requires Concept<decltype((E)), Args...>;.
To achieve this desired concision, this paper proposes to adopt the following syntax:

{ E } => Concept<Args...>;.
As an alternative, this paper proposes:

{ E } -> Concept<Args...>;,
in which the right arrow from a return-type-requirement ([expr.prim.req.compound]) is respecified
to have the interpretation shown above.

2 Background

[N4382] contains many nested requirements of the form requires Same<T, decltype(E)>;,
effectively requiring that the type and value category of expression E is exactly T. During review
in Lenexa, Casey Carter suggested to Eric Niebler that these could be reformulated as { E } ->
Same<T>;. Splitting the primary components of the nested requirement into these distinct pieces
of syntax has two benefits:

• it’s more easily parsed by humans, since the syntax separates the required expression from
the constraint placed upon the required expression, and

• it results in clearer error messages for uses of the concept in which E is not a valid expression,
since the syntax creates separate constraints for the distinct bits of syntax, namely (a) the
expression constraint “E must be a well-formed expression” and (b) the deduction constraint
“the type of E must satisfy Same<T>”).

Eric agreed with Casey that this was an improvement to the specification of the Ranges concepts.
They then applied that transformation throughout the working paper.

Alas, when Casey began implementing the working paper, he quickly discovered bugs in GCC’s
implementation of deduction constraints that rendered them effectively useless. To work around
this limitation, Casey devised the following macro:

#define STL2_EXACT_CONSTRAINT(E, T) E; requires Same<T, decltype((E))>
which he then applied in lieu of { E } -> Same<T>; in his implementation. This form was
well-supported by GCC, and proved sufficient to implement all of [N4382].

During further development of the Ranges TS, Casey and Eric ran across similar instances of
requirements that an expression be valid and that its type and value category satisfy some partic-
ular concept. For example, the Boolean concept requires (in part) that the expression !b (a) be
valid and (b) be both implicitly and explicitly convertible to bool, with both kinds of conversion
producing the same value. They wrote this requirement as { !b } -> ConvertibleTo<bool>;,
generalizing the style of the “expression with exact type and value category” requirement to a “ex-
pression whose type and value category satisfy partial-concept-id” requirement. They implemented
this with a similar macro STL2_CONVERSION_CONSTRAINT(E, T) and all was well with the world.

Until one day it wasn’t.

Late in the TS process, Eric decided to test whether GCC’s implementation of deduction con-
straints had improved such that the preferred syntax could be used directly in the implementation.
He therefore redefined the macros so as to emit that syntax in lieu of the workaround. Unfor-
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tunately, “everything halted and burst into flames.”3 After considerable study of the Concepts
WP wording, they realized that they had misunderstood the lowering of deduction constraints:
{ E } -> Same<T> produces a deduction constraint that requires f(E) to be a valid expression
for an invented abbreviated function template void f(Same<T>);. That function template lowers
to the syntax:

template<class U> requires Same<U, T> void f(U);
This results not in the intended requirement that E’s exact type and value category be T, but re-
quires instead that E be convertible to remove_cvref_t<decltype((E))> and that
remove_cvref_t<decltype((E))> and T be the same type. This is a totally different requirement
than the intent: for example, it’s not satisfiable at all when T is a reference type.

The solution they devised was to reformulate their requirements in a more obscure style; they
used either { E } -> Same<T>&&; or { E } -> Same<T>&;. The first reformulation requires
f(E) to be valid for the invented function template:

template<class U> requires Same<U, T> void f(U&&);
which also is not an “exact type and value category” requirement but an “exact type and same
rvalue-ness” requirement. The second reformulation requires f(E) to be valid for:

template<class U> requires Same<U, T> void f(U&);
which is intended to be a “exact type and lvalue” requirement.

Since then, they discovered that both reformulations are still broken. The first is unsatisfiable
when T is an rvalue reference type, since U always deduces to either an lvalue reference or a
non-reference type. The second breaks when T is a reference type.

3 Proposal summary

In brief, every attempt to express needed constraints via a return-type-requirement has failed. To
meet the needs demonstrated above, we must either (a) provide a different operator (e.g., =>) or
(b) respecify today’s return-type-requirement ([expr.prim.req.compound]).

4 Addendum

Upon review (in Rappersville, 2018-06) of the initial proposal, EWG voted (5-20-6-0-0) to “Change
the specification of the return-type-requirement so it is defined in terms of concept check instead
of template argument deduction.” The following proposed core wording reflects that endorsement,
as well as the group’s stated preference for option (b) above, namely “respecify today’s return-type-
requirement ([expr.prim.req.compound]).” We also provide editorial direction to take advantage of
those core language adjustments in specifying the recently-integrated concepts library (clause 17).

5 Proposed wording4

5.1 As shown below, edit [expr.prim.req.compound] so that a return-type-requirement of the
form { E } -> Concept<Args...>;
will behave as if written E; requires Concept<decltype((E)), Args...>;.

compound-requirement:
{ expression } noexceptopt return-type-requirementopt

3See https://github.com/ericniebler/stl2/issues/330.
4All proposed additions and deletions are relative to [N4762]. Editorial notes are displayed against a gray back-

ground.

https://github.com/ericniebler/stl2/issues/330
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return-type-requirement:
trailing-return-type
-> cv-qualifier-seqopt constrained-parameter cv-qualifier-seqopt abstract-declaratoropt
-> qualified-concept-name

1 A compound-requirement asserts properties of the expression E. Substitution of template
arguments (if any) and verification of semantic properties proceed in the following order:

(1.1) — Substitution of template arguments (if any) into the expression is performed.

(1.2) — If the noexcept specifier is present, E shall not be a potentially-throwing expression
(13.4).

(1.3) — If the return-type-requirement is present, then:

(1.3.1) — Substitution of template arguments (if any) into the return-type-requirement is
performed.

(1.3.2) — If the return-type-requirement is a trailing-return-type ([dcl.decl]), E is implicitly
convertible to the type named by the trailing-return-type. If conversion fails, the enclosing
requires-expression is false.

(1.3.3) — If the return-type-requirement starts with a constrained-parameter (12.1), the expres-
sion is deduced against an invented function template F using the rules in 12.9.2.1. F is a void
function template with a single type template parameter T declared with the constrained-pa-
rameter. A cv-qualifier-seq cv is formed as the union of const and volatile specifiers around
the constrained-parameter. F has a single parameter whose type-specifier is cv T followed
by the abstract-declarator. If deduction fails, the enclosing requires-expression is false. is
a qualified-concept-name ([temp.param]) of the form nested-name-specifieropt concept-name,
the concept it denotes shall be satisfied with decltype((E)) as its sole argument. If
the return-type-requirement is a qualified-concept-name of the form nested-name-specifieropt
concept-name < template-argument-listopt >, the concept it denotes shall be satisfied with
decltype((E)) as its first argument and with the elements, in the order listed, of the
template-argument-list comprising the concept’s subsequent arguments. [ Note: Thus, con-
straints of the form { E } -> Concept; or of the form { E } -> Concept<>; are equivalent
to E; requires Concept<decltype((E))>; while a constraint of the form
{ E } -> Concept<A1, A2, . . ., An>; is equivalent to
E; requires Concept<decltype((E)), A1, A2, . . ., An>;. — end note]

[Example:
. . .
template<typename T, typename U> concept C3 = requires (T t, U u) {}

t == u;
};
template<typename T> concept C4 = requires(T x) {

{*x} -> C3<int> const&;
};
The compound-requirement requires that *x be deduced as an argument for the invented function:

template<C3<int> X> void f(X const&);
In this case, deduction only succeeds if an expression of the type deduced for X can be compared
to an int with the == operator.
. . .
— end example]
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5.2 Throughout Clause [concepts], apply the revised interpretation of a return-type-requirement.

• Replace each constraint of the form E; requires Concept<decltype((E))>;
by the now-equivalent form { E } -> Concept;.

• Replace each constraint of the form E; requires Concept<decltype((E)), Args...>;
by the now-equivalent form { E } -> Concept<Args...>;.
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