
Document number: P1081R0
Revises:
Date: 2018-05-07
Project: ISO JTC1/SC22/WG21: Programming Language C++
Audience: LEWG
Reply to: Vincent Reverdy and Collin Gress

University of Illinois at Urbana-Champaign
vince.rev@gmail.com

On empty structs in the standard library

Note: this is an early draft. It’s known to be incomplet and incorrekt, and it has lots of bad
formatting.

Abstract
In this short paper, we discuss the need for empty structs in the standard library as multipurpose helper
classes, and the different design options available.

Contents
1 Proposal 1

1.1 The problem . 1
1.2 Design options . 2
1.3 Implementation . 2
1.4 Impact on the standard . 2
1.5 Acknowledgements . 2
1.6 References . 2

2 Presentation 3

i

1 Proposal [proposal]
1.1 The problem [proposal.problem]
An empty structure such as:

struct empty_struct {};

is a general purpose utility that can be used in many situations. Examples include a default type in contexts
requiring a class, a blank type for variant, a default tag class, and an empty base class. The Boost libraries
provide a structure called blank for this purpose. In C++17, the standard library provides two main empty
structures:
— tuple<>: however, this is not a “perfectly” basic empty structure since it has a member function swap

and tuple-related functions have been specialized on it
— monostate: however, it is currently considered to be a variant helper class, and is put in <variant>

accordingly
As a consequence the standard library currently lacks a universal “default” empty structure. It also lacks a
way to transform any type, or sequence of types into an empty structure. An example of use is conditional
inheritance:

// Basic empty struct
struct empty_struct {};

// A base class
struct base {/∗ something ∗/};

// A class derived from the base if T satisfies something
template <class T>
struct derived: conditional_t<

is_integral_v<T>,
base,
empty_struct

> {/∗ something ∗/};

// A class derived from the base if T... satisfy something
template <class... T>
struct multi_derived: conditional_t<

is_integral_v<T>,
base,
empty_struct

>... {/∗ something ∗/}; // Will fail

// A template empty struct
template <class... T>
struct empty_struct_template {};

// A class derived from the base if T... satisfy something
template <class... T>
struct multi_derived: conditional_t<

is_integral_v<T>,
base,

§ 1.1 1

https://www.boost.org/doc/libs/1_67_0/boost/blank.hpp

empty_struct_template<T>
>... {/∗ something ∗/}; // Will work

But is a “universal” empty structure even desirable, and what are the different possible options in terms of
design?

1.2 Design options [proposal.solutions]
There are a few possible solutions:

— Do nothing and do not introduce a “universal” empty structure: let users keep creating their own.
— Make monostate the “universal” empty structure: in this case it has to be transfered from <variant>

to <type_traits> or <utility>. What about the template version?
— Add a new empty structure for each new use case that is being standardized: for example, for conditional

inheritance introduce a new empty_base and empty_base_template (or similar) in <type_traits> or
<utility>. In that case, should empty_base be defined as a type alias for empty_base_template<>?

— Add a new “universal” empty structure, with a different name than monostate in <type_traits>
or <utility> such as empty_struct and empty_struct_template (or similar). In that case, should
empty_struct be defined as a type alias for empty_struct_template<>?

In any case, the names of the template and non-template versions of a “universal” empty structure have to be
bikeshedded. Examples of names include: empty_struct, empty_base, empty_tag, empty, blank, nothing,
none, null, nil, vacant, primal. . .

1.3 Implementation [proposal.implementation]
Regardless of the chosen design, and once the name is adjusted, implementation is straightforward and will
consist of something along the line of:

template <class...> struct empty_struct_template {}; // The template empty struct
struct empty_struct {}; // The non-template empty struct, version 0
using empty_struct = empty_struct_template<>; // The non-template empty struct, version 1

Additional functionalities like comparison operators or hash specialization could also be added to the design.

1.4 Impact on the standard [proposal.impact]
This proposal is a pure library extension. It does not require changes to any standard classes or functions.
All the extensions belong to the <type_traits> header or to the <utility> header depending on design
choices. Also, depending on the preferred option, monostate may have to be changed from the <variant>
header to the <type_traits> header or to the <utility> header.

1.5 Acknowledgements [proposal.acknowledgements]
The authors would like to thank the participants to the related discussion on the future-proposals group. This
work has been made possible thanks to the National Science Foundation through the awards CCF-1647432
and SI2-SSE-1642411.

1.6 References [proposal.references]
A few additional type manipulation utilities, Vincent Reverdy, Github (March 2018)
N4727, Working Draft, Standard for Programming Language C++, Richard Smith, ISO/IEC JTC1/SC22/WG21
(February 2018)
General purpose utilities for template metaprogramming and type manipulation, ISO C++ Standard - Future
Proposals, Google Groups (March 2018)
Boost blank, Eric Friedman, The Boost C++ Libraries (2003)

§ 1.6 2

https://groups.google.com/a/isocpp.org/forum/#!topic/std-proposals/R04CWOjABIQ
https://github.com/vreverdy/type-utilities
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4727.pdf
https://groups.google.com/a/isocpp.org/forum/#!topic/std-proposals/R04CWOjABIQ
https://www.boost.org/doc/libs/1_66_0/boost/blank.hpp

Introduction Overview Design Conclusion

On empty structs in the standard library

Vincent Reverdy
Collin Gress

Introduction Overview Design Conclusion

Overview

Summary
A “universal” default empty structure is useful in multiple contexts. The standard library
currently does not have one.

Examples
// Variant
struct monostate {}; // empty struct
struct S {S(int i) : i(i) {} int i;};
variant < monostate , S> variant ;

// Conditional inheritance
struct empty_base {}; // empty struct
template <class T> struct derived
: conditional_t < is_class_v <T> && ! is_final_v <T>, T, empty_base > {};

// Need for a template version
template <class ... > struct empty_base_template {}; // empty struct
template <class ... T> struct derived
: conditional_t < is_class_v <T> && ! is_final_v <T>, T, empty_base_template <T > >... {};

Currently
tuple<>: in <tuple>, has a swap member, is not intended to be a “universal”
empty structure
monostate: in <variant>, is considered to be a helper class for variant
blank: the “universal” empty structure of the Boost libraries

Question
Need for a “universal” empty structure in <type_traits> or <utility>?

Introduction Overview Design Conclusion

Design options

Option 1: do nothing
Do nothing and do not introduce a “universal” empty structure: let users keep creating
their own.

Option 2: promote monostate
Make monostate the “universal” empty structure and transfer it from <variant> to
<type_traits> or <utility>.

Option 3: one empty structure per use case
Add a new empty structure for each new use case that is being standardized such as a
new empty_base for conditional inheritance.

Option 4: a universal empty structure on top of monostate
Add a new “universal” empty structure, with a different name than monostate in
<type_traits> or <utility>.

Introduction Overview Design Conclusion

Design of the template version

Motivation
// Need for a template version
template <class ... > struct empty_base_template {};
template <class ... T> struct derived
: conditional_t < is_class_v <T> && ! is_final_v <T>, T, empty_base_template <T > >... {};

Design question
struct empty_struct {}: the non-template and the template versions are two
independent structures
using empty_struct = empty_struct_template<>: the non-template version is
an alias of the template version

Introduction Overview Design Conclusion

Conclusion

What option?
Option 1: do nothing
Option 2: promote monostate
Option 3: one empty structure per use case
Option 4: a universal empty structure on top of monostate

Non-template and template versions
the non-template and the template versions are two independent structures?
the non-template version is an alias of the template version?

Bikeshedding

empty_struct
empty
blank

nothing
none
null

nil
vacant
primal

. . . and what about the template version?

Additional functionalities
Comparison operators?
Hash specialization?

Introduction Overview Design Conclusion

Thank you for your attention

	Contents
	1 Proposal
	1.1 The problem
	1.2 Design options
	1.3 Implementation
	1.4 Impact on the standard
	1.5 Acknowledgements
	1.6 References

	2 Presentation

