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Abstract
In this short paper, we discuss the need for empty structs in the standard library as multipurpose helper
classes, and the different design options available.
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1 Proposal [proposal]
1.1 The problem [proposal.problem]
An empty structure such as:

struct empty_struct {};

is a general purpose utility that can be used in many situations. Examples include a default type in contexts
requiring a class, a blank type for variant, a default tag class, and an empty base class. The Boost libraries
provide a structure called blank for this purpose. In C++17, the standard library provides two main empty
structures:
— tuple<>: however, this is not a “perfectly” basic empty structure since it has a member function swap

and tuple-related functions have been specialized on it
— monostate: however, it is currently considered to be a variant helper class, and is put in <variant>

accordingly
As a consequence the standard library currently lacks a universal “default” empty structure. It also lacks a
way to transform any type, or sequence of types into an empty structure. An example of use is conditional
inheritance:

// Basic empty struct
struct empty_struct {};

// A base class
struct base {/∗ something ∗/};

// A class derived from the base if T satisfies something
template <class T>
struct derived: conditional_t<

is_integral_v<T>,
base,
empty_struct

> {/∗ something ∗/};

// A class derived from the base if T... satisfy something
template <class... T>
struct multi_derived: conditional_t<

is_integral_v<T>,
base,
empty_struct

>... {/∗ something ∗/}; // Will fail

// A template empty struct
template <class... T>
struct empty_struct_template {};

// A class derived from the base if T... satisfy something
template <class... T>
struct multi_derived: conditional_t<

is_integral_v<T>,
base,
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https://www.boost.org/doc/libs/1_67_0/boost/blank.hpp


empty_struct_template<T>
>... {/∗ something ∗/}; // Will work

But is a “universal” empty structure even desirable, and what are the different possible options in terms of
design?

1.2 Design options [proposal.solutions]
There are a few possible solutions:

— Do nothing and do not introduce a “universal” empty structure: let users keep creating their own.
— Make monostate the “universal” empty structure: in this case it has to be transfered from <variant>

to <type_traits> or <utility>. What about the template version?
— Add a new empty structure for each new use case that is being standardized: for example, for conditional

inheritance introduce a new empty_base and empty_base_template (or similar) in <type_traits> or
<utility>. In that case, should empty_base be defined as a type alias for empty_base_template<>?

— Add a new “universal” empty structure, with a different name than monostate in <type_traits>
or <utility> such as empty_struct and empty_struct_template (or similar). In that case, should
empty_struct be defined as a type alias for empty_struct_template<>?

In any case, the names of the template and non-template versions of a “universal” empty structure have to be
bikeshedded. Examples of names include: empty_struct, empty_base, empty_tag, empty, blank, nothing,
none, null, nil, vacant, primal. . .

1.3 Implementation [proposal.implementation]
Regardless of the chosen design, and once the name is adjusted, implementation is straightforward and will
consist of something along the line of:

template <class...> struct empty_struct_template {}; // The template empty struct
struct empty_struct {}; // The non-template empty struct, version 0
using empty_struct = empty_struct_template<>; // The non-template empty struct, version 1

Additional functionalities like comparison operators or hash specialization could also be added to the design.

1.4 Impact on the standard [proposal.impact]
This proposal is a pure library extension. It does not require changes to any standard classes or functions.
All the extensions belong to the <type_traits> header or to the <utility> header depending on design
choices. Also, depending on the preferred option, monostate may have to be changed from the <variant>
header to the <type_traits> header or to the <utility> header.
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Overview

Summary
A “universal” default empty structure is useful in multiple contexts. The standard library
currently does not have one.

Examples
// Variant
struct monostate {}; // empty struct
struct S {S(int i) : i(i) {} int i;};
variant < monostate , S> variant ;

// Conditional inheritance
struct empty_base {}; // empty struct
template <class T> struct derived
: conditional_t < is_class_v <T> && ! is_final_v <T>, T, empty_base > {};

// Need for a template version
template <class ... > struct empty_base_template {}; // empty struct
template <class ... T> struct derived
: conditional_t < is_class_v <T> && ! is_final_v <T>, T, empty_base_template <T > >... {};

Currently
tuple<>: in <tuple>, has a swap member, is not intended to be a “universal”
empty structure
monostate: in <variant>, is considered to be a helper class for variant
blank: the “universal” empty structure of the Boost libraries

Question
Need for a “universal” empty structure in <type_traits> or <utility>?
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Design options

Option 1: do nothing
Do nothing and do not introduce a “universal” empty structure: let users keep creating
their own.

Option 2: promote monostate
Make monostate the “universal” empty structure and transfer it from <variant> to
<type_traits> or <utility>.

Option 3: one empty structure per use case
Add a new empty structure for each new use case that is being standardized such as a
new empty_base for conditional inheritance.

Option 4: a universal empty structure on top of monostate
Add a new “universal” empty structure, with a different name than monostate in
<type_traits> or <utility>.
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Design of the template version

Motivation
// Need for a template version
template <class ... > struct empty_base_template {};
template <class ... T> struct derived
: conditional_t < is_class_v <T> && ! is_final_v <T>, T, empty_base_template <T > >... {};

Design question
struct empty_struct {}: the non-template and the template versions are two
independent structures
using empty_struct = empty_struct_template<>: the non-template version is
an alias of the template version
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Conclusion

What option?
Option 1: do nothing
Option 2: promote monostate
Option 3: one empty structure per use case
Option 4: a universal empty structure on top of monostate

Non-template and template versions
the non-template and the template versions are two independent structures?
the non-template version is an alias of the template version?

Bikeshedding

empty_struct
empty
blank

nothing
none
null

nil
vacant
primal

. . . and what about the template version?

Additional functionalities
Comparison operators?
Hash specialization?
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Thank you for your attention
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