
P1031R1: Low level �le i/o library

Document #: P1031R1
Date: 2018-09-11
Project: Programming Language C++

Library Evolution Working Group
SG14 Low Latency study group

Reply-to: Niall Douglas
<s_sourceforge@nedprod.com>

A proposal for a low level �le i/o library very thinly wrapping kernel syscalls into a portable standard
library API, preserving all of the time and space complexities of the host platform. On Freestanding
C++, embedded_file_source can be used to mark up statically bound �le data into an emulated
read-only �lesystem. See [P1026] A call for a Data Persistence (iostream v2) study group for some
of the interesting things one can build with this library as a foundation.

Some early thought on how the C++ contracts syntax could be extended to specify side e�ects can
also be found here, as the speci�cation of (lack of) side e�ects is highly important for implementing
any e�cient iostreams v2. The section proposing changes to the C++ memory model to support
memory mapped �les and virtual memory has been removed in favour of a future standalone paper
addressed to SG12 Unde�ned Behaviour.

A reference implementation of the proposed library with reference API documentation can be found
at https://ned14.github.io/llfio/. It works well on Android, FreeBSD, MacOS, Linux and
Microsoft Windows on ARM, AArch64, x64 and x86.

Changes since R0:
• Wrote partial draft TS wording for deadline, handle, io_handle, mapped,
mapped_view, native_handle_type and file_io_error.

• Added impact on the standard regarding the proposed [[no_side_effects]] et al
contracts attributes.

• Added embedded_file_handle, embedded_file_source, random_file_handle.
• Deprecated, pending removal, async_file_handle and io_handle.
• Added detail on proposed large, huge, massive and super page support.

Contents

1 Introduction 5
1.1 Latency to storage has become more important than it was 5
1.2 The immature standard library support for �le i/o leads to a lot of ine�cient and

buggy code and/or reinvention of the wheel . 7
1.3 The C++ memory and object model needs reform 8

1

mailto:s_sourceforge@nedprod.com

2 Examples of use 9
2.1 Read an entire �le into a vector assuming a single valid extent: 10
2.2 Write multiple gather bu�ers to a �le: . 10
2.3 Map a �le into memory and search it for a string (1): 11
2.4 Map a �le into memory and search it for a string (2): 12
2.5 Kernel memory allocation and control (1): . 13
2.6 Kernel memory allocation and control (1): . 14
2.7 Sparsely stored arrays: . 15
2.8 Resumable i/o with Coroutines: . 15
2.9 Read all valid extents of a �le using asynchronous �le i/o: 16

3 Impact on the Standard 17
3.1 Changes to the C++ memory model to support mapped and virtual memory 17
3.2 New attributes [[no_side_effects]] and [[no_visible_side_effects]], and new

contract syntax for specifying lack of side e�ects . 18
3.2.1 I/O write reordering barriers . 20

3.3 Non-adopted WG21 proposal dependencies . 21

4 Proposed Design 22
4.1 Handles to kernel resources . 22

4.1.1 Class hierarchy inheriting from handle . 25
4.1.2 Miscellaneous and utility classes and functions 29

4.2 Generic �lesystem algorithms and template classes 31
4.2.1 Introduction . 31
4.2.2 Filesystem template library (so far) � the `FTL' 32
4.2.3 Planned generic �lesystem template algorithms yet to be reference implemented 34

4.3 Filesystem functionality deliberately omitted from this proposal 35

5 Design decisions, guidelines and rationale 35
5.1 Race free �lesystem . 35
5.2 No (direct) support for kernel threads . 37
5.3 Asynchronous �le i/o is much less important than synchronous �le i/o 37
5.4 Pass through the raciness at the low level, abstract it away at the high level 37

6 Draft Technical Speci�cation 38
6.1 Scope . 38
6.2 Conformance . 38

6.2.1 POSIX conformance . 38
6.2.2 Operating system dependent behavior conformance 39

6.3 References . 39
6.4 Terms and de�nitions . 39

6.4.1 Cold cache . 39
6.4.2 File extents . 40
6.4.3 Filesystem entity . 40
6.4.4 File serial number . 40
6.4.5 Kernel page cache . 40

2

6.4.6 Mapped �les . 40
6.4.7 Memory page . 40
6.4.8 Page fault . 41
6.4.9 Storage device . 41
6.4.10 File unique id . 41
6.4.11 Virtual memory . 41
6.4.12 Warm cache . 41

6.5 General principles . 42
6.5.1 Thinly wrap system calls . 42
6.5.2 Zero memory copies . 42
6.5.3 Idealised random access storage . 42
6.5.4 Genericity in i/o . 43
6.5.5 Race free �lesystem . 43

6.6 Header <io/algorithm/cached_parent_handle_adapter> 44
6.7 Header <io/algorithm/shared_fs_mutex> . 44
6.8 Header <io/deadline> . 44

6.8.1 Synopsis . 44
6.8.2 Class deadline . 44

6.9 Header <io/directory_handle> . 45
6.10 Header <io/embedded_file_handle> . 45
6.11 Header <io/embedded_file_source> . 45
6.12 Header <io/file_handle> . 45
6.13 Header <io/handle> . 45

6.13.1 Synopsis . 45
6.13.2 Class handle . 50

6.14 Header <io/io_handle> . 53
6.14.1 Synopsis . 53
6.14.2 Class io_handle . 57

6.15 Header <io/map_handle> . 66
6.16 Header <io/mapped_file_handle> . 66
6.17 Header <io/mapped> . 66

6.17.1 Synopsis . 66
6.17.2 Class mapped . 67

6.18 Header <io/map_view> . 68
6.18.1 Synopsis . 68
6.18.2 Class map_view . 69

6.19 Header <io/native_handle> . 70
6.19.1 Synopsis . 70
6.19.2 Class native_handle_type . 72

6.20 Header <io/status_code> . 72
6.20.1 Synopsis . 72
6.20.2 Class file_io_error . 73

6.21 Header <io/path_discovery> . 73
6.22 Header <io/path_handle> . 73
6.23 Header <io/random_file_handle> . 73

3

6.24 Header <io/section_handle> . 73
6.25 Header <io/stat> . 73
6.26 Header <io/statfs> . 73
6.27 Header <io/symlink_handle> . 73

7 Frequently asked questions 74
7.1 Why bother with a low level �le i/o library when calling the kernel syscalls directly

is perfectly �ne? . 74
7.2 The �lesystem has a reputation for being riddled with unpredictable semantics and

behaviours. How can it be possible to usefully standardise anything in such a world? 74
7.3 Why do you consider race free �lesystem so important as to impact performance for

all code by default, when nobody else is making such claims? 75

8 Acknowledgements 76

9 References 76

4

1 Introduction

Why does the C++ standard need a low level �le i/o library, above and beyond needing one to
build out an iostreams v2?

1.1 Latency to storage has become more important than it was

For a long time now, kernels have kept a cache of recently accessed �lesystem data in order to
improve read latencies, but also to bu�er writes in order to reorder those writes into strides suitable
for e�ciently making use of a spinning hard drive's actuators. A randomly placed 4Kb i/o to
main memory takes about 5 microseconds, whereas the same i/o to a PMR1 hard drive takes up to
26,000 microseconds 99% of the time. One could a�ord a few extra memory copies of an i/o without
noticing a di�erence. Thus the standard library's iostreams does not worry too much about the
multiple memory copies (in the whole system between the C++ code and the hard drive) that all
the major STL implementations make per i/o2.

The rise of SSD storage has changed things. Now a SATA connected �ash drive takes maybe 800
microseconds for that 4Kb i/o @ 99%3, and random access is as fast as sequential access, so that
is no longer an amortised latency �gure hiding large individual i/o latency variance. Furthermore,
�ash based SSDs are highly concurrent, they can service between 16 and 32 concurrent random 4Kb
i/o's (queue depth, QD) in almost the same time as a single random 4Kb i/o. These two di�erences
profoundly transform how to write algorithms which work well on a �lesystem, but it also has an
important consequence for C++:

800 microseconds

32
= 25 microseconds per 4Kb i/o amortised @ 99%.

On a SATA connected �ash SSD with QD32 i/o, every unnecessary memory copy increases i/o cost
by a minimum of 20%!

Achieving sustained QD32 i/o is rare however � one needs to be performing large sequential blocks
of i/o of at least 32 x 4Kb = 128Kb to have any chance of sustaining QD32, and for large sequential
block i/o, latency is usually unimportant for most users4.

1Perpendicular magnetic recording. Some of the recent budget large capacity hard drives use Shingled magnetic
recording (SMR), these are approximately 15x slower at writes than PMR drives, though they use a 20Gb PMR write
cache to hide the drive's true write speed.

2All the major STL implementations implement std::ofstream::write() via the C function fwrite(). Because
of bu�ering, fwrite() often calls write() multiple times. Each is an unavoidable memory copy into the kernel page
cache, plus kernel transition. Eventually the dirty page in the kernel page cache will reach its age deadline, and be
�ushed to storage.

3The 99% means that 99% of i/o latencies will be below the given �gure. All latency numbers in this section
come from empirical testing by me on hardware devices. They di�er signi�cantly from manufacturer �gures. Device
manufacturers tend to quote the latency of the device without intervening �lesystem or user space transition. All
latency values quoted in this paper include intervening software systems, and are what a user space process can
realistically expect to achieve.

4But not all. A past consulting client of mine had a problem whereby their application was applying real-time
�lters to uncompressed 8k video at a high frame rate. The CPU demands were not the problem, it was the storage

5

Figure 1: Latency di�erential between reads performed using std::ifstream and the proposed Low
level �le i/o library as the size of the i/o increases. Test was conducted on a warm cache 100Mb
�le with random o�set i/o, and represents the average of 100,000 iterations. Note the invariance to
block size of the low level �le i/o library's file_handle benchmark up to half the CPU's L1 cache
size, demonstrating that no unnecessary memory copies have occurred. Note that the low level �le
i/o library's mapped_file_handle benchmark demonstrates no copying of memory at all.

1

10

100

1000

10000

100000

1000000
1

 2 4

8

16

32

64

12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

N
an

o
se

co
n

d
s

Block size

std::ifstream (VS2017) afio::file_handle afio::mapped_file_handle

Block size 1 4 16 64 256 1024 4096 16384 65536

std::ifstream (VS2017) 3301 2986 3017 2994 3020 7254 7389 20282 71538
llfio::file_handle 1915 1766 1869 1873 1855 1750 1812 2633 4576

llfio::mapped_file_handle 99 99 96 108 101 105 108 107 111

However, just recently NVMe rather than SATA connected �ash drives have become available to the
mass market. These perform that random 4Kb i/o in just 300 microseconds @ 99%. At QD4, which
is much more common than QD32, every unnecessary memory copy in the whole system increases
i/o cost by 6%. If you are using <iostream> on a recent MacBook Pro (which has a high end
NVMe �ash SSD), perhaps 10% of your i/o cost is due to your choosing <iostream>, and especially
with larger block sizes it really begins to hurt, as you can see in Figure 1. In my opinion, that is
unacceptable in the C++ standard going forward.

And the march of technological progress will make things even worse soon. Intel's NVMe Optane
drives using X-Point non-volatile memory will do that 4Kb i/o in just 35 microseconds @ 99%

subsystem: to get smooth video added an unacceptable amount of latency to the real-time video stream for their
customers. This is exactly the sort of problem domain C++ ought to excel at.

6

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

1980 1985 1990 1995 2000 2005 2010 2015 2020

LO
G

(b
yt

e
s

p
er

 r
ea

l U
S$

)
Magnetic vs Flash vs XPoint Storage Capacity per

Inflation-adjusted Dollar 1980-2018

Magnetic Hard Drives Flash Drives XPoint Drives

Model Magnetic Hard Drives Model Flash Drives Model XPoint Drives

R2 = 0.997229

R2 = 0.998677

Figure 2: Magnetic vs Flash vs XPoint storage capacity per in�ation-adjusted dollar 1980-2018.

and 13 microseconds @ 50%, and at QD1. Every unnecessary memory copy in the whole system
increases i/o cost by 14-38%.

DDR4 NV-DIMMs have now been standardised, in which your non-volatile storage will do a 4Kb
i/o in 8 microseconds, and indeed a whole 2Mb i/o in just 80 microseconds. Every unnecessary
memory copy is now adding 60% to i/o costs. See Figure 2 for a logistic regression plot of the evo-
lution of storage bytes per in�ation adjusted dollar for spinning rust, �ash and X-Point technology
storage.

If C++ is to achieve the direction laid out in [P0939] Direction for ISO C++, in my opinion it
needs a data persistence implementation which enables zero memory copies throughout the whole
system. One will soon no longer be able to get away with anything less.

1.2 The immature standard library support for �le i/o leads to a lot of ine�cient
and buggy code and/or reinvention of the wheel

Memory mapped �les, especially on 64 bit architectures, are usually a good reasonable default
choice for most i/o to non-networked drives. They usually have superb sequential and random i/o
performance, and usually cause no more than one memory copy in the whole system. Yet using
them in C++ � even ignoring the fact that memory mapped �les are pure unde�ned behaviour in

7

the current C++ standard � is not as trivial as one would imagine. Even with the Boost C++
Libraries to hand, there are two main mechanisms for mapping �les into memory, and the plethora
of questions about various corner case use issues on Stack Over�ow would suggest that neither is
entirely obvious to people. They are certainly not `�re and forget', like a std::ofstream would be.

One area where a lot of people get stuck is how to e�ciently append to a memory mapped �le. Most
developers � probably even most of the WG21 experts reading this paper right now � would suggest
making the �le much bigger and coordinate between your processes at what o�set one `appends'
new data. They would suggest this because there is a widespread, and completely inaccurate, belief
that memory maps are �xed size, and you must tear them down and recreate bigger ones in order
to expand a map.

In fact, all the major platforms let you reserve address space for future expansion of a memory
map. Indeed, often they will auto-expand your memory map into that reservation if the maximum
extent of the backing �le is increased, or they provide a super fast syscall for poking the kernel
to expand maps of that �le across the system. So, as it happens, appending to memory mapped
�les without costly teardown and recreation of maps is fully supported by kernels, yet judging from
Stack Over�ow posts, very few realise this5.

A standard library supplied implementation of a `�re and forget' memory mapped �le primitive
object would help address these sorts of problem. The proposed low level �le i/o library proposes
a suite of polymorphic objects which can perform i/o. Code written to use them need not consider
their implementation, thus allowing initiating code to choose whichever implementation is most
suitable. Virtual function overrides then choose an optimised implementation, and the code need
not worry itself about implementation details. Appends, for example, `just work' with optimal
performance for the chosen implementation.

1.3 The C++ memory and object model needs reform

Nobody likes messing with the C++ memory model. It leads to long protracted arguments about
very arcane subject matter on which only a few people on the planet, let alone most of WG21,
can argue a point with strong authority. Even those who work all day long in compiler internals
can become quite non-commital when it comes to what reform the C++ memory and object model
ought to have, though everybody seems to agree that reform is needed.

Much of the workload for SG12 Unde�ned behaviour is related to the C++ memory and object
model, speci�cally because the oodles of unde�ned behaviour in there which makes much formal
reasoning about a C++ program currently impossible, with obvious consequences on inability to
optimise or statically analyse code. If you are masochist, you may wish to try rewriting the sections
of the current C++ standard relating to memory and objects to support memory mapped �les, and
then try to wrap your head around what kinds of backwards compatibility issues may now arise
with existing C++ programs.

I have made one attempt at this, and mainly came away feeling very stupid and profoundly ignorant.
I have come to realise that my twenty years working in C++ is insu�cient to really understand it
well. Nevertheless, I strongly believe that this is worth doing, so I will make a second attempt some

5https://stackoverflow.com/questions/4460507/appending-to-a-memory-mapped-file

8

https://stackoverflow.com/questions/4460507/appending-to-a-memory-mapped-file

time in 2019, this time using the CompCERT memory model v2 as inspiration, and we shall see
where we get to.

The reason why the C++ standard needs a low level �le i/o library, and not something higher level, is
because only at the low level can we properly think through how the C++ memory and object model
needs to be reformed to handle things like C++ objects living in persistent memory. For example,
we need to devise proper write reordering constraints � which are separate to those in <atomic> �
to ensure that a sequence of modi�cations to C++ objects are issued in a sudden-power-loss safe
way to persistent memory.

All this is valuable work worth doing, even if WG21 rejects this proposed approach to �le i/o.

2 Examples of use

A surprising number of people wanted examples of usage before any further discussion of the pro-
posed library design. I therefore supply many such use examples, and my thanks to std-proposals
for suggesting which.

I make the following caveats in the following use examples:

• This is a very low level library o�ering absolute maximum performance, with minimum guar-
antees of e�ects, semantics, or behaviours. It is correspondingly less convenient to use. Specif-
ically, no single bu�er overloads, no integration with STL containers, no serialisation/deseri-
alisation, no dynamic memory allocation, no (traditional) exception throws. All these conve-
nience APIs, and stronger behaviour guarantees, would be in later standardised layers built
on top of this bottom most layer. Please see [P1026] A call for a Data Persistence (iostream
v2) study group for a broad overview of the vision of which this proposed library is just a
foundation.

• There is no �le length. Files do not have length. They have a maximum extent property. This
property refers to the maximum possible extent o�set which you will encounter when reading
the valid extents which constitute the �le's storage. It is extremely important to understand
this di�erence: �les, especially ones built using the planned generic �lesystem algorithms
template library, may regularly have a maximum extent in the Petabytes range, but store
only a few Kb of extents. Algorithms and programs which treat the maximum extent as a
length will perform extremely poorly in this situation.

This is why we truncate �les, we do not resize �les, because we are truncating those extents
exceeding the new maximum extent. We can also truncate to a later maximum extent. I
appreciate that many �nd the idea of `truncating to extend' confusing, but remember that
increasing the maximum extent of a �le doesn't actually do anything. It simply adjusts a
number in the metadata in the inode of the �le, and any related kernel resources. It does
nothing to the actual �le storage. This is why .extend() is a poor choice of name, because
nothing is extended.

I agree that .truncate() is not ideal either, but I feel it is better to focus on the data which
could be lost when naming. Better suggestions are, of course, welcome. But do bear in mind

9

that there is a single kernel syscall for changing the maximum extent value, and there is no
race free concept of `set to X if X > Y' etc.

2.1 Read an entire �le into a vector assuming a single valid extent:

For brevity, the initial examples are lazy code which will su�er from pathologically poor performance
on �les with a large maximum extent. Later examples account for allocated extents.

1 namespace llfio = std::experimental::io;
2

3 // Open the file for read
4 llfio::file_handle fh = llfio::file(
5 {}, // path_handle to base directory
6 "foo" // path_view to path fragment relative to base directory
7 // default mode is read only
8 // default creation is open existing
9 // default caching is all
10 // default flags is none
11);
12

13 // Make a vector sized the current maximum extent of the file
14 std::vector<std::byte> buffer(fh.maximum_extent());
15

16 // Synchronous scatter read from file
17 auto bytesread = read(// read() found using ADL
18 fh, // handle to read from
19 0, // offset
20 {{ buffer.data(), buffer.size() }} // Single scatter buffer of the vector
21 // default deadline is infinite
22);
23

24 // In case of racy truncation of file by third party to new length, adjust buffer to
25 // bytes actually read
26 buffer.resize(bytesread);

2.2 Write multiple gather bu�ers to a �le:

1 namespace llfio = std::experimental::io;
2

3 // Open the file for write, creating if needed, don’t cache reads nor writes
4 llfio::file_handle fh = llfio::file(
5 {}, // path_handle to base directory
6 "hello", // path_view to path fragment relative to base directory
7 llfio::file_handle::mode::write, // write access please
8 llfio::file_handle::creation::if_needed, // create new file if needed
9 llfio::file_handle::caching::only_metadata // cache neither reads nor writes of data on this

handle
10 // default flags is none
11);
12

13 // Empty file. Note this is racy, use creation::truncate to be non-racy.
14 fh.truncate(0);

10

15

16 // Perform gather write
17 const char a[] = "hel";
18 const char b[] = "l";
19 const char c[] = "lo w";
20 const char d[] = "orld";
21

22 fh.write(0, // offset
23 { // gather list, buffers use std::byte
24 { a, sizeof(a) - 1 },
25 { b, sizeof(b) - 1 },
26 { c, sizeof(c) - 1 },
27 { d, sizeof(d) - 1 },
28 }
29 // default deadline is infinite
30);
31

32 // Explicitly close the file rather than letting the destructor do it
33 // (this throws if it fails, a failure during destruction terminates the process)
34 fh.close();

2.3 Map a �le into memory and search it for a string (1):

1 namespace llfio = std::experimental::io;
2

3 // Open the mapped file for read
4 llfio::mapped_file_handle mh = llfio::mapped_file(
5 {}, // path_handle to base directory
6 "foo" // path_view to path fragment relative to base directory
7 // default mode is read only
8 // default creation is open existing
9 // default caching is all
10 // default flags is none
11);
12

13 auto length = mh.maximum_extent();
14

15 // Bless the mapped memory so we can use it directly
16 std::bless(mh.address(), length);
17

18 // Find my text
19 for (char *p = reinterpret_cast<char *>(mh.address());
20 (p = (char *)memchr(p, ’h’, reinterpret_cast<char *>(mh.address()) + length - p));
21 p++)
22 {
23 if (strcmp(p, "hello"))
24 {
25 std::cout << "Happy days!" << std::endl;
26 }
27 }

11

2.4 Map a �le into memory and search it for a string (2):

The preceding example used the wrap of other facilities into a convenience type mapped_file_handle.
For more control and customisation, it can also be done by hand:

1 namespace llfio = std::experimental::io;
2

3 // Open the file for read
4 llfio::file_handle rfh = llfio::file(//
5 {}, // path_handle to base directory
6 "foo" // path_view to path fragment relative to base directory
7 // default mode is read only
8 // default creation is open existing
9 // default caching is all
10 // default flags is none
11);
12

13 // Open the same file for atomic append
14 llfio::file_handle afh = llfio::file(//
15 {}, // path_handle to base directory
16 "foo", // path_view to path fragment relative to base directory
17 llfio::file_handle::mode::append // open for atomic append
18 // default creation is open existing
19 // default caching is all
20 // default flags is none
21);
22

23 // Create a section for the file of exactly the current maximum extent of the file
24 llfio::section_handle sh = llfio::section(rfh);
25

26 // Map the end of the file into memory with a 1Mb address reservation
27 llfio::map_handle mh = llfio::map(sh, 1024 * 1024, sh.length() & ~4095);
28

29 // Append stuff to append only handle
30 llfio::write(afh,
31 0, // offset is ignored for atomic append only handles
32 {{ "hello", 6 }} // single gather buffer
33 // default deadline is infinite
34);
35

36 // Poke map to update itself into its reservation if necessary to match its backing
37 // file, bringing the just appended text into the map. A no-op on many platforms.
38 size_t length = mh.update_map();
39

40 // Bless the mapped memory so we can use it directly
41 std::bless(mh.address(), length);
42

43 // Find my appended text
44 for (char *p = reinterpret_cast<char *>(mh.address());
45 (p = (char *) memchr(p, ’h’, reinterpret_cast<char *>(mh.address()) + length - p));
46 p++)
47 {
48 if (strcmp(p, "hello"))
49 {
50 std::cout << "Happy days!" << std::endl;
51 }

12

52 }

2.5 Kernel memory allocation and control (1):

Something not initially obvious is that this library standardises kernel virtual memory support.
This is `for free' as we implement all of the support and control for memory mapped �les, and the
exact same kernel APIs work with swap �le mapped memory (e.g. mmap()).

Standardising this support adds lots of interesting opportunities for how STL containers and algo-
rithms which work on reasonably large datasets are implemented.

1 namespace llfio = std::experimental::io;
2

3 // Get a kernel page of memory. This may call whatever the equivalent
4 // to mmap() is on this platform to fetch new private memory backed by
5 // the swap file, or it may reuse a page released earlier. The contents
6 // of the returned page is unspecified (a parameter exists to request
7 // that it be all bits zero i.e. always fetch fresh pages from kernel).
8 // Only on first write will a page fault pin a real page for the returned
9 // page.
10 llfio::map_handle mh = llfio::map(4096);
11

12 // Fill the newly allocated memory with ’a’ C style. For each first write
13 // to a page, it will be page faulted into a private page by the kernel.
14 std::byte *p = mh.address();
15 size_t len = mh.length();
16 memset(p, ’a’, len); // blesses the memory into existence
17

18 // Tell the kernel to throw away the contents of any whole pages
19 // by resetting them to the system all zeros page. These pages
20 // will be faulted into existence on first write.
21 mh.zero_memory({ mh.address(), mh.length() }); // unblesses
22

23 // Do not write these pages to the swap file (flip dirty bit to false)
24 mh.do_not_store({mh.address(), mh.length()}); // unblesses
25

26 // Fill the memory with ’b’ C++ style, probably faulting new pages into existence
27 llfio::map_view<char> p2(mh); // blesses
28 std::fill(p2.begin(), p2.end(), ’b’);
29

30 // Kick the contents of the memory out to the swap file so it is no longer cached in RAM
31 // This also remaps the memory to reserved address space.
32 mh.decommit({mh.address(), mh.length()}); // unblesses
33

34 // Map the swap file stored edition back into memory, it will fault on
35 // first read to do the load back into the kernel page cache.
36 mh.commit({ mh.address(), mh.length() }); // blesses
37

38 // And rather than wait until first page fault read, tell the system we are going to
39 // use this region soon. Most systems will begin an asynchronous population of the
40 // kernel page cache immediately.
41 llfio::map_handle::buffer_type pf[] = { mh.address(), mh.length() };
42 mh.prefetch(pf);

13

43

44

45 // You can actually save yourself some time and skip manually creating map handles.
46 // Just construct a mapped directly, this creates an internal map_handle instance,
47 // so memory is released when the span is destroyed
48 llfio::mapped<float> f(1000); // 1000 floats, allocated used mmap()
49 std::fill(f.begin(), f.end(), 1.23f);

2.6 Kernel memory allocation and control (1):

Another thing not initially obvious is that this library standardises shared memory support. This
is also `for free' as memory maps are by default shared memory when multiple processes open the
same �le.

1 namespace llfio = std::experimental::io;
2

3 // Create 4Kb of anonymous shared memory. This will persist
4 // until the last handle to it in the system is destructed.
5 // You can fetch a path to it to give to other processes using
6 // sh.current_path()
7 llfio::section_handle sh = llfio::section(4096);
8

9 {
10 // Map it into memory, and fill it with ’a’
11 llfio::mapped<char> ms1(sh);
12 std::fill(ms1.begin(), ms1.end(), ’a’);
13

14 // Destructor unmaps it from memory
15 }
16

17 // Map it into memory again, verify it contains ’a’
18 llfio::mapped<char> ms1(sh);
19 assert(ms1[0] == ’a’);
20

21 // Map a *second view* of the same memory
22 llfio::mapped<char> ms2(sh);
23 // Probably ought to be UB to access without deactivating other view first
24 // I’ll deal with this in a forthcoming paper in 2019
25 // std::unbless(ms1.data(), ms1.size());
26 assert(ms2[0] == ’a’);
27

28 // The addresses of the two maps are unique
29 assert(ms1.data() != ms2.data());
30

31 // Yet writes to one map appear in the other map
32 ms2[0] = ’b’;
33 // std::unbless(ms2.data(), ms2.size()); // Select new active view
34 // std::bless(ms1.data(), ms1.size());
35 assert(ms1[0] == ’b’);

14

2.7 Sparsely stored arrays:

A neat use case making use of the new kernel memory allocation support is for sparsely allocated
huge arrays. One can allocate up to 127Tb of address space on most 64 bit architectures.

1 namespace llfio = std::experimental::io;
2

3 // Make me a 1 trillion element sparsely allocated integer array!
4 llfio::mapped_file_handle mfh = llfio::mapped_temp_inode();
5

6 // On an extents based filing system, doesn’t actually allocate any physical
7 // storage but does map approximately 4Tb of all bits zero data into memory
8 mfh.truncate(1000000000000ULL * sizeof(int));
9

10 // Create a typed view of the one trillion integers
11 // Note that map_view current blesses all 4Tb of data in the view
12 // I’ll need to discuss if this is wise with SG12 in 2019
13 llfio::map_view<int> one_trillion_int_array(mfh);
14

15 // Write and read as you see fit, if you exceed physical RAM it’ll be paged out
16 one_trillion_int_array[0] = 5;
17 one_trillion_int_array[999999999999ULL] = 6;

2.8 Resumable i/o with Coroutines:

Note that asynchronous �le i/o was dropped from this proposal in R1. This use case example
remains to remind WG21 members that the reference library can and does implement asynchronous
�le i/o.

1 namespace llfio = std::experimental::io;
2

3 // Create an asynchronous file handle
4 llfio::io_service service;
5 llfio::async_file_handle fh = llfio::async_file(
6 service,
7 {},
8 "testfile.txt",
9 llfio::async_file_handle::mode::write,
10 llfio::async_file_handle::creation::if_needed
11);
12

13 // Resize it to 1024 bytes
14 truncate(fh, 1024);
15

16 // Begin to asynchronously write "hello world" into the file at offset 0,
17 // suspending execution of this coroutine until completion and then resuming
18 // execution. Requires the Coroutines TS.
19 alignas(4096) char buffer[] = "hello world";
20 co_await co_write(fh, 0, { { buffer, sizeof(buffer) } });

15

2.9 Read all valid extents of a �le using asynchronous �le i/o:

Note that asynchronous �le i/o was dropped from this proposal in R1. This use case example
remains to remind WG21 members that the reference library can and does implement asynchronous
�le i/o.

1 namespace llfio = std::experimental::io;
2

3 // Create an i/o service to complete the async file i/o
4 llfio::io_service service;
5

6 // Open the file for read
7 llfio::async_file_handle fh = llfio::async_file(//
8 service, // The i/o service to complete i/o to
9 {}, // path_handle to base directory
10 "foo" // path_view to path fragment relative to base directory
11 // default mode is read only
12 // default creation is open existing
13 // default caching is all
14 // default flags is none
15);
16

17 // Get the valid extents of the file.
18 const std::vector<
19 std::pair<llfio::file_handle::extent_type, llfio::file_handle::extent_type>
20 > valid_extents = fh.extents();
21

22 // Schedule asynchronous reads for every valid extent
23 std::vector<
24 std::pair<std::vector<llfio::byte>, llfio::async_file_handle::io_state_ptr>
25 > buffers(valid_extents.size());
26 for (size_t n = 0; n < valid_extents.size(); n++)
27 {
28 // Set up the scatter buffer
29 buffers[n].first.resize(valid_extents[n].second);
30 for(;;)
31 {
32 llfio::async_file_handle::buffer_type scatter_req{
33 buffers[n].first.data(), buffers[n].first.size()
34 }; // buffer to fill
35 // NOTE: Uses proposed catch() operator from P1095 Zero overhead deterministic failure
36 std::expected ret = catch(llfio::async_read(//
37 fh, // handle to read from
38 { { scatter_req }, valid_extents[n].first }, // The scatter request buffers + offset
39 [](// The completion handler
40 llfio::async_file_handle *, // The parent handle
41 llfio::async_file_handle::io_result<llfio::async_file_handle::buffers_type> & // Result of

the i/o
42) { /* do nothing */ }
43 // default deadline is infinite
44));
45 // Was the operation successful?
46 if (ret)
47 {
48 // Retain the handle to the outstanding i/o

16

49 buffers[n].second = std::move(ret).value();
50 break;
51 }
52 if (ret.error() == std::errc::resource_unavailable_try_again)
53 {
54 // Many async file i/o implementations have limited total system concurrency
55 std::this_thread::yield();
56 continue;
57 }
58 // Otherwise, throw a file_io_error exception under P0709 Deterministic exceptions
59 throw ret.error();
60 }
61 }
62

63 // Pump i/o completion until no work remains
64 while (service.run())
65 {
66 // run() returns per completion handler dispatched if work remains
67 // It blocks until some i/o completes (there is a polling and deadline based overload)
68 // If no work remains, it returns false
69 }
70

71 // Gather the completions of all i/o scheduled for success and errors
72 for (auto &i : buffers)
73 {
74 // Did the read succeed?
75 if (i.second->result.read)
76 {
77 // Then adjust the buffer size to that actually read
78 i.first.resize(i.second->result.read.value().size());
79 }
80 else
81 {
82 // Throw the cause of failure as an exception
83 throw i.second->result.read.error();
84 }
85 }

3 Impact on the Standard

Listed at the end of this section are the in-�ight WG21 papers this proposal is dependent upon, and
which would need to enter the standard before this library can be considered. However a bigger
issue involves the potential changes to the C++ memory model, plus new contracts with which to
indicate the limited side e�ects of i/o functions in order to enable improved optimisation.

3.1 Changes to the C++ memory model to support mapped and virtual mem-
ory

After lengthy discussion on std-proposals and elsewhere, I have decided to remove this section en-
tirely in favour of a standalone paper addressed to SG12 Unde�ned Behaviour. You probably noticed

17

during the use case examples above where there are problems even with the current formulation of
[P0593] Implicit creation of objects for low-level object manipulation.

This � as yet unwritten � paper is expected to propose merging elements of the CompCERT memory
model v2 into the C++ memory model su�cient to be able to express in standardese a speci�cation
of how memory mapped �les and virtual memory ought to interact with the C++ programming
language.

3.2 New attributes [[no_side_effects]] and [[no_visible_side_effects]], and
new contract syntax for specifying lack of side e�ects

Our current expected model for any iostreams v2 is that constexpr code will use Re�ection to
examine types and statically generate sequences of scatter-gather and memory translation bu�er
operations which will serialise and deserialise objects of that type.

It is highly important for the future e�ciency of this that the low level i/o functions do not cause
the compiler to dump and reload all state around every i/o, as they must do at present, because a
potential kernel syscall could a�ect program state in unknown-to-the-compiler ways. The compiler
must therefore be conservative, and generate highly suboptimal code.

The read i/o functions proposed do not modify their handle on most platforms, and on those
platforms we can guarantee to the compiler that there are either no side e�ects or no visible side
e�ects except for those objects modi�ed by parameters.

Reusing [P0593] bless(), I propose the following contracts syntax for the read io_handle function
so we can tell the compiler what side e�ects i/o read has:

1 constexpr! void ensure_blessed(buffers_type buffers)
2 {
3 for(auto &buffer : buffers)
4 {
5 bless(buffer.data(), buffer.size());
6 }
7 }
8

9 // This function has no side effects visible to the caller except
10 // for the objects it creates in the scatter buffer list.
11 virtual buffers_type io_handle::read(io_request<buffers_type> reqs,
12 deadline d = deadline()) throws(file_io_error)
13 [[no_side_effects]] // no side effects at all, so can elide
14 [[ensures: ensure_blessed(reqs.buffers)]] // except the input buffers are modified
15 [[ensures: ensure_blessed(return)]]; // except the output buffers are modified

The key thing to note here is if the caller never accesses any of the scatter bu�ers returned by
the function, the read can be optimised out entirely due to the [[no_side_effects]] attribute.
Obviously the compiler also does not dump and reload any state around this scatter read apart
from bu�ers supplied and returned, despite it calling a kernel system call, because we are giving a
hard guarantee to the compiler that it is safe to assume no side e�ects apart from modifying the
scatter bu�ers.

18

Gather write is a bit more interesting. The maximum extent, or metadata such as last accessed
timestamp, of the �le may change. Maps of the �le's data may also change. Moreover, other open
handles to hard links to the same inode may also see changes as a result of a write. This presents
a quandry.

One extreme approach is to say that gather writes have no visible side e�ects to the calling function
e.g.

1 virtual const_buffers_type io_handle::write(io_request<const_buffers_type> reqs,
2 deadline d = deadline())
3 throws(file_io_error)
4 [[no_visible_side_effects]]; // cannot elide, but don’t dump and reload state

Here we are telling the compiler that there are side e�ects, just not ones visible to the caller. Hence
the compiler cannot optimise out calling this function, but it can skip dumping and reloading state
despite the kernel system call made by the function.

This is probably too extreme though � iostreams v2 code may make use of fetching the maximum
extent property, and the above would mean that the compiler would optimise out a second or third
fetch of the maximum extent given that it has been told that there are no visible side e�ects. So
let's try again, saying that the i/o handle instance will be changed:

1 virtual const_buffers_type io_handle::write(io_request<const_buffers_type> reqs,
2 deadline d = deadline())
3 throws(file_io_error)
4 [[no_visible_side_effects]] // cannot elide, but don’t dump and reload state
5 [[ensures: *this]]; // except for anything to do with this object instance

We might also consider this too extreme. After all, a common use case in low level �le i/o is where we
have two open handles to the same �le: one maps the �le into read-only memory, the other performs
atomic appends. If the program reads from the read-only map around the current maximum extent,
then performs an atomic append, and then reads the same region again, the second read would be
optimised out which would wreck the algorithm. So let's try a third time:

1 // Dump and reload state for this function
2 virtual const_buffers_type io_handle::write(io_request<const_buffers_type> reqs,
3 deadline d = deadline())
4 throws(file_io_error);
5

6 // Example use case
7 T &value; // some type being serialised
8 io_handle &h; // some i/o handle
9 extent_type offset; // some file offset to serialise into
10

11 // Any iostreams v2 would statically assemble at constexpr time a sequence
12 // of serialisation actions for some given type T. The two most basic actions
13 // would be call some user callable, or write a sequence of gather buffers.
14 //
15 // We need to prevent the compiler reloading these every single time we write a buffer.
16 static constexpr serialisation_actions value_serialisation[] = { ... };
17

18 // Perform the serialisation
19 for(const auto &o : value_serialisation)

19

20 {
21 if(o.do_processing)
22 {
23 o.processing(offset, h, value); // call some statically instantiated processing function
24 }
25 else if(o.do_write)
26 {
27 // Write a sequence of gather buffers
28 buffers_type written = h.write({o.write_buffers, offset});
29 // Tell the compiler what we have definitely not changed, and so don’t reload
30 do_not_reload(value, offset, value_serialisation, o, /* NOTE! */ h);
31 offset += written.bytes_transferred();
32 }
33 }
34 // Tell the compiler that h may have changed, so please reload it
35 bless(h);

So here we have a hypothetical do_not_reload(...) function which tells the compiler to assume
that each of the variables and memory regions passed into it does not require reloading. Note the
inclusion of h at the end, this means that later code would optimise out any second calls to member
functions which could introduce unexpected behaviour. We thus tell the compiler that h contains
new objects by blessing it, this ought to force the compiler to reload anything relating to h.

None of the above is proposed in this paper as that work is to be pushed into the aforementioned
paper proposing changes to the C++ memory and object model destined for SG12 some time next
year. I left in the detail above so you can see where I intend to head next when proposing those
changes.

3.2.1 I/O write reordering barriers

C and C++ allow the programmer to specify constraints on memory read and write operations,
speci�cally to constrain the apparent extent of reordering that the compiler and CPU are permitted
to do. One can use atomics with a memory order speci�ed, or one can call a fence function which
applies a memory reordering constraint for the current thread of execution either at just the compiler
level, or also at the CPU level whereby the CPU is told what ordering its symmetric multiprocessing
cores needs to manifest in visible side e�ects.

File i/o is no di�erent: concurrent users of the same �le or directory or �le system will experience
races unless they take special measures to coordinate amongst themselves.

It might seem self evident that one would also need to propose a standardised mechanism for
indicating reordering constraints on i/o, which are separate to those for threads. My current advice
is that we should not do this � yet.

The �rst reason why is that persistent memory is just around the corner, and I think it would be
unwise to standardise without the industry gaining plenty of empirical experience �rst. So kick that
decision down a few standard releases.

Secondly, the proposed library herein does expose whatever acquire-release semantics is implemented
by the host operating system for �le i/o, plus the advisory locking infrastructure implemented by the

20

host, plus the ability to enable write-through caching semantics. It also provides barrier(), which
is semantically equivalent to std::atomic_thread_fence(std::memory_order_seq_cst), though
one should not write code which relies upon it working, as it frequently � and silently � does not
work.

Note that if the �le is opened in non-volatile RAM storage mode, barrier() calls the appropriate
architecture-speci�c assembler instructions to correctly �ush CPU writes to main memory, so in this
sense there is library, if not language, support for persistent memory. The obvious sticker is that
barrier() is a virtual function with signi�cant preamble and epilogue, so for �ushing a single cache
line it is extremely ine�cient relative to direct language support for i/o reordering constraints.

Nevertheless, one can write standards conforming code with the proposed library which performs
better on persistent memory than on traditional storage, and my advice is that this is good enough
for the next few years.

3.3 Non-adopted WG21 proposal dependencies

The proposed low level �le i/o library has hard dependencies on the following proposal papers not
yet adopted into the C++ standard:

1. P0122 span: bounds-safe views for sequences of objects https://wg21.link/P0122.

2. P0709 Zero-overhead deterministic exceptions: Throwing values https://wg21.link/P0709.

This proposes that the C++ language implements the lightweight throwing of error/status
codes similar to that implemented by Boost.Outcome [1]. The draft Technical Speci�cation
wording below assumes P0709 is available.

3. P0734 Concepts https://wg21.link/P0734.

4. P0829 Freestanding C++ https://wg21.link/P0829.

This paper sets out the parts of the C++ language and standard library which are widely
compatible with embedded systems. A subset of the proposed low level �le i/o library would
be available in a freestanding system, speci�cally embedded_file_handle et al which let you
create a read-only �le system statically linked into the �rmware binary.

5. P1028 SG14 status_code and standard error object for P0709 Zero-overhead deterministic
exceptions https://wg21.link/P1028.

This proposes a refactored, even lighter weight <system_error> v2 which �xes a number
of problems which have emerged in the use <system_error> as hindsight has emerged. The
replacement for std::error_code, status_code, is rare�ed into a proposed std::error object
for [P0709]. This low level �le i/o library in turn uses custom error code domains extending
that std::error with relevant path and handle information, into a file_io_error object
which you will see used frequently throughout this paper.

6. P1029 SG14 [[move_relocates]] https://wg21.link/P1029.

This proposes a new C++ attribute [[move_relocates]] which lets the compiler optimise
such attributed moves as aggressively as trivially copyable types. If approved, this would

21

https://wg21.link/P0122
https://wg21.link/P0709
https://wg21.link/P0734
https://wg21.link/P0829
https://wg21.link/P1028
https://wg21.link/P1029

enable P1028's standard error object to gain the ability to transport std::exception_ptr

instances directly, a highly desirable feature for improving e�ciency of legacy C++ exceptions
support under P0709.

Most of the types consumed and returned in the APIs of this Low level �le i/o proposal have
standard layout, are trivially copyable, or are move relocating. Whilst not essential for this
proposal, move relocation (or any equivalent alternative) would signi�cantly help quality of
codegen.

7. P1030 Filesystem path views https://wg21.link/P1030.

This proposes a lightweight view of a �lesystem path. Path views can help eliminate the often
frequent copying of �lesystem paths when calling a library such as this one. This library uses
path_view almost universally throughout.

8. P1095/N2289 Zero overhead deterministic failure � A uni�ed mechanism for C and C++
https://wg21.link/P1095.

This proposes a speci�c mechanism for implementing P0709, one based on P1028. Whilst
not mandatory for this proposal, our reference implementation library is written around that
same speci�c mechanism.

4 Proposed Design

The low level �le i/o library generally works with span<T> or span<span<T>>, and thus should
automatically work well with Ranges.

4.1 Handles to kernel resources

The design is very straightforward and intuitive, if you are familiar with low level i/o. We do
not innovate in this proposed design. It is more, or less, a straight thin wrap of a subset of the
POSIX �le i/o speci�cation, as it was standardised in the POSIX.1-2008 speci�cation (ten years ago
was chosen as it has wide implementation conformance), but with signi�cantly weakened behaviour
guaramtees than those in the POSIX speci�cation. This weakening was done to aid portability,
speci�cally to far-from-POSIX �lesystems such as those typically used in HPC and heterogeneous
compute.

There is a fundamental type called native_handle_type which is a simple, unmanaged union storage
of one of a POSIX �le descriptor, or a Windows HANDLE. Any other platform-speci�c resource
identi�er types would be added here.

native_handle_type contains disposition about the identi�er, speci�cally what kind it is, what
rights it has, is it seekable, does it require aligned i/o, must it be spoken to in overlapped and so
on. This is done for performance, as asking the kernel about handle rights is expensive. It can be
made invalid i.e. it has a formal invalid state. It is all-constexpr.

22

https://wg21.link/P1030
https://wg21.link/P1095

At the base of the inheritance hierarchy is the polymorphic class handle. It manages a
native_handle_type, which can be released from its handle if wished. When the handle is destruc-
ted, the native_handle_type inside the instance is closed.

class handle is a move-only type. It does provide a clone() member function which will duplicate
the handle. The reason that the C++ copy constructor is disabled is because duplicating handles
with the kernel is expensive, and unintentionally doing so would be bad.

Apart from releasing, cloning and closing, the only other thing one can do with a handle is to
retrieve its current path on the �lesystem. It is very important to understand that this is not the
path it was opened with (if the user wants that, they can cache it themselves). Rather it is what
the kernel says is the current path for this inode right now6. This can be useful to know, as other
processes can arbitrarily change the path of large numbers of open �les in a single syscall simply
by changing the name of a directory further up the hierarchy. In fact, handle has entirely trivial
storage as it stores nothing which is allocated from memory, it can thus be constexpr constructed,
and moves of it relocate7.

Handle de�nes many types and bit�elds used by its re�nements:

• mode

This selects what kind of i/o we wish to do with a handle. One of none, attribute read,
attribute write, read, write, (atomic) append.

• creation

This selects what opening a handle ought to do if the path speci�ed already exists or doesn't
exist. One of open existing, only if not exist, if needed, (atomic) truncate.

• caching

This selects what kind of caching (bu�ering) the kernel ought to perform for this handle:

� No caching whatsoever, and additionally fsync() the �le and any other related resources8

at certain key moments to ensure recovery after sudden power loss (immediately after
creation, immediately after maximum extent change, immediately before close).

On many, but not all, platforms this is direct DMA to the device from user space which
comes with a list of special use requirements (see later in paper).

� Cache only metadata. On many, but not all, platforms this is direct DMA to the device
from user space.

� Cache only reads, and with fsync() at key moments described above. Writes block until
they and the metadata to retrieve them after power loss fully reach storage.

6A standard API for this is not present in POSIX.1-2008, but proprietary APIs are available on all the major
platforms and most of the minor ones, including embedded operating systems. For those few systems without kernel
support, we provide a templated adapter for all handle types which caches the path for you.

7This is a concept which doesn't exist in the language yet, see [P1029] for its proposal paper.
8On Linux ext4, one must also sync the parent directory as well as the inode to ensure complete recovery after

power loss.

23

� Cache reads and metadata, and fsync() at key moments described above. Writes block
until they fully reach storage, but the metadata to retrieve them is written out asyn-
chronously.

� Cache reads, writes, and metadata (the default). Writes are enqueued and written to
storage at some later point asynchronously.

� Cache reads, writes, and metadata, and fsync() at key moments described above.

� Avoid writing to storage as much as possible. Useful for temporary �les.

For those not familiar with data synchronisation outside of fsync(), explicitly disabling some
or all of kernel caching at handle open results in much better performance than following every
write with a fsync(). Indeed, in some �ling systems like ZFS, a special fast non-volatile device
is used to complete an uncached write immediately, which is synced later to slow non-volatile
storage.

• flags

This selects various bespoke behaviours and semantics:

� unlink_on_first_close

Causes the entry in the �lesystem to disappear on �rst close by any process in the system.

Microsoft Windows partially implements this in its kernel, and signi�cantly changes how
it caches data based on the setting of this �ag.

� disable_safety_fsyncs

Disables the safety fsync()'s for the modes listed above.

� disable_safety_unlinks

Do not compare inode and device with that of the open �le descriptor before unlinking
it.

� disable_prefetching

Most kernels prefetch data into the kernel cache after an i/o. For truly random i/o
workloads, this �ag ought to be set.

� maximum_prefetching

If we are copying a �le's contents using caching i/o, this �ag ought to be set.

� win_disable_unlink_emulation

On very recent editions of Microsoft Windows 10, there is a special kernel call to delete
a �le with POSIX semantics i.e. its entry is removed from the directory immediately.

For older editions of Windows, POSIX unlink semantics are emulated by renaming on
unlink the �le entry to something very random such that it cannot be found9. Setting

9Due to VMS legacy compatibility, NT implements �le deletion by marking a �le entry as deleted which prevents it
being opened for access thenceforth. It does not remove the �le entry until some arbitrary time (usually milliseconds)

24

this �ag disables this emulation.

� win_disable_sparse_file_creation

Microsoft's NTFS �le system was designed in the 1980s back when extents-based �ling
systems were not common. It was later upgraded to an extents-based implementation
capable of working with sparse �les. Due to backwards compatibility, during �le creation
one must opt-in to using extents-based storage. That setting remains attached to that
�le for the remainder of its life, which could theoretically break some programs. The
proposed library always opts in to extents based storage by default for newly created
�les to match semantics with almost every modern �ling system elsewhere. This �ag
disables that default opt-in.

4.1.1 Class hierarchy inheriting from handle

Inheriting from class handle are these re�nements of handle:

• io_handle

I/O handle adds types and member functions for scatter-gather synchronous i/o to a seekable
handle10. All i/o is optionally deadline based, with a choice of interval or absolute timeout.

I/O handle also adds member functions for mutually excluding part, or all of, the resource
represented by the handle from any other process in the system. These are always advisory
not mandatory exclusions i.e. they require all processes to cooperate by checking for locks
before an i/o.

Inheriting from io_handle are these re�nements of i/o handle:

� file_handle

File handle is the simple, unfussy thin wrap of the platform's �le read and write facilities.
All i/o is always performed via the appropriate syscall. This passes through any POSIX
read-write atomicity and sequential consistency guarantees which may be implemented
by the platform.

after the last open handle to it in the system has closed. This confounds code written to expect POSIX semantics
whereby unlinking a �le causes it to immediately disappear from the �lesystem. This workaround of renaming the
�le to something very random simulates, incompletely, POSIX semantics on Microsoft Windows, su�ciently so at
least that most �lesystem algorithms `just work'.

10Non-seekable handles are valid, but that would start to overlap the Networking TS. For various technical reasons,
asynchronous socket and pipe i/o cannot portably use the same i/o service implementation as asynchronous �le i/o,
this is why this proposed library is orthogonal to the Networking TS.

25

File handles provide the following additional static member functions:

∗ For creating and opening a named �le using a path_handle instance as the base
(a default constructed path_handle instance requires the path view to refer to an
absolute path).

∗ For creating a cryptographically randomly named �le at a location speci�ed by a
path_handle instance. This is useful for creating a temporary �le which once fully
written to, will be atomically renamed to replace an existing �le.

∗ For creating a temporary �le in one of the temporary �le locations found during path
discovery (see path_discovery below), counted against user quota or system RAM
quota.

∗ For securely creating an anonymous temporary inode at a location speci�ed by a
path_handle instance. These are always unnamed, always inaccessible inodes which
do not survive process exit. These are used especially by generic template algorithms
to implement novel STL containers like vectors with constant, rather than linear,
capacity expansion times.

File handles provide the following additional polymorphic member functions:

∗ For getting and setting the maximum �le extent (not `the length', though many
people get confused on this).

∗ For issuing a write reordering barrier which can be optionally applied to a subset
of extents in the �le, optionally with blocking until preceding writes reach storage,
and optionally with an additional �ush of inode metadata which indicates current
maximum extent, timestamps etc.

∗ For enumerating the valid extents in the �le. Modern extents-based �ling systems
(pretty much all in common use today except for FAT) only store the extents written
to, so a 1Tb maximum extent �le might only have 4Kb of extents allocated within
it. Colloquially known as `sparse �les'.

∗ For deallocating a valid extent in the �le. Colloquially known as `hole punching'.

∗ For unlinking the hard link currently referred to by the open handle.

∗ For relinking the hard link currently referred to by the open handle to another path,
optionally atomically replacing any item currently at that path.

∗ For creating a new hard link to the inode referred to by the open handle at a new
path location.

Note that one can instance any re�nement of file_handle implementation and pass it to
functions as if it were a true file_handle. Under the bonnet, scatter-gather synchronous
i/o is implemented as whatever is the most optimal for that implementation type e.g.
for mapped_file_handle scatter-gather synchronous i/o is implemented with memcpy().

Inheriting from file_handle are these re�nements of �le handle:

∗ async_file_handle

26

The async �le handle can behave in every way as if a synchronous �le handle i.e.
the member functions inherited from io_handle behave as if synchronous, though
unlike in other implementations, they can observe timeouts.

It adds member functions for scatter-gather asynchronous i/o taking a completion
callback (async_read(), async_write()). Instantiating an async �le handle requires
the user to supply an instance of io_service to issue callback completions against,
this must be pumped for completion dispatch very similarly to the io_service in
the Networking TS.

Async �le handle also provides member functions for coroutinised i/o (co_read(),
co_write()) whereby the calling coroutine is suspended until the i/o completes,
whereupon it is resumed.

[Note: Asynchronous �le i/o was removed in R1 of this proposal after feed-
back from the Rapperswil meeting. � end note]

∗ embedded_file_handle

The embedded �le handle refers to data held in static constant duration storage in
the program. It is read-only, but provides an option for it to be opened read-write,
whereupon it ignores all writes to the handle instead of failing.

∗ mapped_file_handle

The mapped �le handle is the most highly performing �le handle implementation
in terms of i/o, but comes with signi�cantly higher cost construction, extension and
destruction and with severe usability limits on 32 bit architectures. It also loses any
POSIX read-write atomicity and sequential consistency guarantees which may be
implemented by the platform on the other types of handle.

It always maps the whole �le into memory, extending the map as needed into an
address reservation. Unless you are opening and closing �les frequently, or the �les
you are working with are much smaller than the system page size, or you are on a 32
bit architecture, this is an excellent default choice for most users giving maximum
zero whole system memory copy performance on all devices apart from network
attached storage devices.

∗ random_file_handle

The random �le handle synthesises read-only �le data by hashing a random or user-
supplied nonce with the o�set requested in the i/o. This creates the appearance of
a �le full of random data. It is read-only, but provides an option for it to be opened
read-write, whereupon it ignores all writes to the handle instead of failing.

This handle has a special con�guration option whereby scatter reads may randomly
return random data bu�ers instead of data from a supplied source i/o handle. This
has a myriad of use cases, including testing the handling of random data corruption,
or whether a piece of generic i/o handle using code correctly handles alternation in
returned bu�ers between �lled bu�ers or direct bu�ers.

27

� map_handle

Map handle is a region of shared or private memory mapped from a backing section_handle,
or unmapped private memory backed by the swap �le, or reserved address space. Within
the committed (i.e. allocated) part of that region, i/o can be performed, or more usefully,
the region can be accessed directly as memory.

Added member functions include the ability to commit (allocate) sub-regions of reserved
address space, or to decommit (deallocate) previously allocated sub-regions.

Map handle can map small, large, huge, massive and super pages to the same extent as
the host operating system kernel.

It comes with a comprehensive set of static member functions which can be applied to any
memory in a process e.g. `please kick the contents of this memory page out to backing
storage', `please unset the dirty bit of this memory page (i.e. don't �ush its contents
to storage until the next modi�cation)', or `please asynchronously ready this range of
memory for access (i.e. prefault it)' and so on.

mapped_file_handle and many other classes use this class as an internal implementation
primitive for all forms of mapped and unmapped and reserved memory.

• path_handle

Path handles refer to some base location on the �lesystem from which path lookup begins.
The inode opened may change its path arbitrarily and at any time without a�ecting the paths
which use an open path handle as their base. This handle is, therefore, the foundation of the
race free �lesystem which the proposed library implements.

Many platforms implement the creation of these handles as an especially lightweight operation,
hence they are standalone from directory_handle.

Inheriting from path_handle are these re�nements of path handle:

� directory_handle

Directory handles refer to inodes which list other inodes. The main added member func-
tion is to read that list of other inodes into a user supplied array (span) of directory_entry.
One can open existing directories, create new directories, create randomly named new
directories, and in your choice of path including temporary paths found during path
discovery. One can of course also unlink and relink directories.

• section_handle

Section handles refer to a section of shared or private memory. They may be backed by a user
supplied file_handle, or by an anonymous inode in one of the path categories returned by
path_discovery, or by some other source of shared memory. They are particularly useful for
when you need some temporary storage (counted against either the RAM quota or the current
user's quota) which will be thrown away at process end.

Section handles have a length which can be queried and changed. It may be less than, but
cannot exceed, the maximum extent of any backing �le.

28

Section handles have additional �ags in addition to those inherited from handle. Section
handle �ags are reused by map_handle:

� none: This memory region is reserved address space.

� read: This memory region can be read.

� write: This memory region can be written.

� cow: This memory region is copy-on-write (i.e. when you �rst write, the kernel makes
you a process-local copy of the page).

� execute: This memory region can contain code which the CPU will execute.

� nocommit: Don't immediately allocate resources for this section/memory region upon
construction. Most kernels allocate space for unbacked sections against the system mem-
ory + swap �les, and will refuse new allocations once some limit is reached. Setting
this �ag causes unbacked sections to allocate system resources `as you go' i.e. as you
explicitly commit pages using the appropriate member functions of map_handle.

� prefault: Prefault, as if by reading every page, any views of memory upon creation.
This eliminates �rst-page-access latencies where on �rst access, the page is faulted into
existence.

� executable: This section represents an executable binary.

� singleton: A single instance of this section is to be shared by all processes using the
same backing �le. This means that when one process changes the section's length, all
other processes are instantly updated (with appropriate updates of maps of the section)
at the same time, which can be considerably more e�cient.

� nvram: Assume that this section represents non-volatile memory, and use i/o semantics
appropriate for that type of memory. Setting this �ag provides much superior perfor-
mance on persistent memory based hardware, plus it activates various kernel options
where appropriate to provide sudden power loss safety on persistent memory.

� page_sizes_1: Use utils::page_sizes()[1] sized pages, or fail.

� page_sizes_2: Use utils::page_sizes()[2] sized pages, or fail.

� page_sizes_3: Use utils::page_sizes()[3] sized pages, or fail.

� barrier_on_close: Maps of this section, if writable, issue a blocking barrier() when
destructed, blocking until data (not metadata) reaches physical storage.

• symlink_handle

Symlink handles refer to inodes which contain a relative or absolute path. Added member
functions can read and write that stored path.

4.1.2 Miscellaneous and utility classes and functions

There are also some utility classes:

29

• deadline

A deadline is a standard layout and trivially copyable type which speci�es either an interval
or absolute deadline. Deadlines can construct from any arbitrary std::chrono::duration<>

or std::chrono::time_point<>. The advantage to this object is halving the number of
polymorphic function overloads required, and maintaining a stable ABI.

• directory_entry

A path_view and stat_t combination. Filled by directory_handle's read() function. Note
that it has standard layout and is trivially copyable.

• page_sizes()

A function returning const lvalue ref to a vector<size_t> representing the page sizes currently
available to the calling process on this machine.

• path_discovery

Path discovery generally runs once per process and it interrogates the platform to discover
suitable paths for (i) storage backed temporary �les (counted against the current user's quota)
and (ii) memory backed temporary �les (counted against available RAM). Path discovery
does not trust the platform speci�c APIs, and it tries creating a �le in each of the directories
reported by the platform to �nd out which are valid. This is slow, so the results are statically
cached.

• path_view

Path views are covered in detail in [P1030], but in essence they are a lightweight reference to a
string which is the format of a �lesystem path. They are standard layout and trivially copyable.
Path views are very considerably more e�cient to work with than �lesystem path objects, and
make a big di�erence to performance, especially when enumerating large directories.

• stat_t

Almost certainly WG21 will want the name to be changed to avoid con�ict with the platform
stat_t, but I haven't personally found it to be an issue in practice. This is a C++-i�ed struct

stat_t, it uses std::filesystem constants and data types instead of the platform-speci�c
ones. It is standard layout and trivially copyable.

One has the ability to stamp an open handle with parts of a stat_t, as well as �ll parts of a
stat_t from an open handle.

• statfs_t

Similarly, almost certainly WG21 will want the name to be changed to avoid con�ict with
the platform statfs_t, but I haven't personally found it to be an issue in practice. This
is a C++-i�ed struct statfs_t, it uses std::filesystem constants and data types instead
of the platform-speci�c ones. Unusually for types in the proposed library, this one is not
trivially copyable as it contains two std::string's and a std::filesystem::path for the
f_fstypename, f_mntfromname and f_mntonname members.

30

There are some minor utility functions as well which are not described in detail for now. They have
the kernel return single TLB entry allocations of varying sizes either via a C malloc type API or via
a special STL allocator, ask the kernel to �ll a bu�er with cryptographically strong random data,
fast to-hex and from-hex routines and so on. These minor utility functions are used throughout the
internal implementation of the library, but are useful to other code built on top of the library as
well.

4.2 Generic �lesystem algorithms and template classes

4.2.1 Introduction

A key thing to understand about this low level library is the lack of guaranteed behaviours it provides
in its very lowest layers. This is principally because �le i/o has surprisingly few guarantees in the
POSIX standard, and thus we are gated as to what the thin kernel syscall wraps can guarantee. For
example, file_handle::barrier() asks the kernel to issue a write reordering barrier on a range of
bytes in the open �le, with options for blocking until preceding writes reach storage, and whether
to also �ush the metadata with which to retrieve the region after sudden power loss. This looks
great, but you will �nd wide variation as to how well that is implemented across platforms. These
are the current behaviours on the three major platforms11:

• FreeBSD/MacOS

For normal �les, range barriers are not available, so the whole �le is barriered. Metadata is
always synchronised. On MacOS only, non-blocking barriers are available, on FreeBSD all
barriers always block until completion of the entire �le plus metadata. On FreeBSD a total
sequentially consistent ordering is maintained, so concurrent barriers exclude other barriers
until completion. I do not know the behaviour on MacOS, but I would assume it is the same.

For mapped �les, range barriers are only available if not synchronising metadata, in which case
it is to the nearest 4Kb page level. Blocking until writes reach storage forms a sequentially
consistent ordering, otherwise concurrent barriers are racy.

• Linux

For normal and mapped �les, fully implemented to the nearest 4Kb page level. BUT with
the huge caveat that these do not form a total sequential ordering amongst concurrent callers
upon overlapping byte ranges, so it is therefore racy in terms of useful recovery after sudden
power loss.

It is common on Linux to silently ignore barriers for code running inside virtual machines on
publicly shared hypervisors, especially LXC containers as they are a source of denial of service
attack. Filing systems on Linux may also be mounted with hardware barriers disabled, in this
situation the storage device is not required to observe the ordering of writes issued to it by
the kernel.

• Microsoft Windows

11This is from memory, it may be inaccurate.

31

For normal �les, range barriers are not available, so the whole �le is barriered. Otherwise
full implementation, and a total sequentially consistent ordering is maintained so concurrent
barriers exclude other barriers until completion.

For mapped �les, range barriers are only available if not synchronising metadata, in which
case it is to the nearest 4Kb page level. Concurrent barriers are always racy.

Filing systems on Windows may be mounted with hardware barriers disabled, in this situation
the storage device is not required to observe the ordering of writes issued to it by the kernel.

What this means is that on Linux or if barriering on a mapped �le, you must coordinate between
multiple processes or threads using your own mechanism to ensure only one thing issues a barrier for
some range at a time. On all platforms apart from Linux, currently range barriers with metadata
actually barrier the whole �le, so there is no point in trying to achieve any concurrency in your
write reordering barriers.

In case you think this sort of platform speci�c variance is limited to just write reordering barriers,
you may be in for a surprise. In my own personal opinion (explained in more detail below), I don't
think any standards text can claim anything more than `implementation de�ned' for all the lowest
level functions. Even the humble write data function has a multitude of platform speci�c surprise
(see standardese for write() below).

These variations may seem problematic, but it is exactly what generic �lesystem algorithms and
template classes are for: to add layers of increasing abstraction plus guarantees on top of the raw
low level API. That way, for those who need the raw bare metal performance, they can get that.
But for more portable code where we need some consistency, template algorithms can abstract out
these platform speci�c details for us.

As an analogy, in the Networking TS we have lowest level functions such as async_write_some()
which attempts to write some or all of a gather bu�er sequence. But we also have higher level func-
tions � async_write() � which guarantees to write a whole gather bu�er sequence, not completing
until it is all done. That design pattern of API layers of increasing guarantees is present in �le i/o
as well, just a bit more complex than (and quite di�erent to) socket i/o.

4.2.2 Filesystem template library (so far) � the `FTL'

These are some generic algorithms and template classes which act as abstraction primitives for more
complex �lesystem algorithms. It should be stressed that all of the below are 100% header only
code, and use no platform-speci�c APIs. They are implemented exclusively using the public APIs
in the proposed low level �le i/o library. This may give an idea of the expressive power to build
useful and interesting �lesystem algorithms using the proposed design.

• shared_fs_mutex

This is an abstract base class for a family of shared �ling system mutexs i.e. a suite of
algorithms for excluding other processes and threads from execution using the �lesystem as
the interprocess communication mechanism.

32

Unlike memory-based mutexes already in the standard library, in the lock operation these
mutexes take a sequence of entities upon which to take a shared or exclusive lock. An entity
is a 63 bit number (the top bit stores whether it is exclusive or not)12.

The reason that these mutexes are list-of-entities based is because it is very common to lock
more than one thing concurrently on the �ling system, whereas with memory-based mutexes
that is the exception rather than the norm. For example, if you were updating �le number 2
and �le number 10 in a list of �les at the same time, you would concurrently lock entities 2
and 10. If you were implementing a content addressable database like a git store, you'd use
the last 63 bits of the git SHA as the entity, and so on.

Each of the implementations has varying bene�ts and tradeo�s, including the ability to lock
many entities in the same time as one entity. The appropriate choice depends on use case,
and to an extent, the platform upon which the code is running.

� shared_fs_mutex::atomic_append

This implementation uses an atomically appended shared �le as the IPC mechanism.
Advantages include invariance to number of entities locked at a time, ability to sleep the
CPU and compatibility with all forms of storage except NFS. Disadvantages include an
intolerance to one of the using processes experiencing sudden process exit during lock
hold, and �lling all available free space on �ling systems which are not extents based (i.e.
incapable of `hole punching').

� shared_fs_mutex::byte_ranges

This implementation uses the byte range locks feature of your platform as the IPC mech-
anism. Advantages include ability to sleep the CPU and automatic handling of sudden
process using during lock hold. Disadvantages include wildly di�ering performance and
scalability between platforms, lack of thread compatibility with POSIX implementations
other than recent Linux, ability to crash NFS in the kernel due to overload.

� shared_fs_mutex::lock_files

This implementation uses exclusively created lock �les as the IPC mechanism. Ad-
vantages include simplicity and wide compatibility without corner case quirks on some
platforms. Disadvantages include an inability to sleep the CPU, and an intolerance to
one of the using processes experiencing sudden process exit during lock hold.

� shared_fs_mutex::memory_map

This implementation uses a shared memory region as the IPC mechanism. Advantages
include blazing performance to the extent of making your mouse pointer stutter. Disad-
vantages include inability to use networked storage, inability to sleep the CPU, and an
intolerance to one of the using processes experiencing sudden process exit during lock
hold.

� shared_fs_mutex::safe_byte_ranges

12This design choice works around the problem that on some platforms, byte range locks are signed values, and
attempting to take a lock on a top bit set extent will thus always fail.

33

This implementation � on POSIX only � wraps the byte range locks on the platform with
a thread locking layer such that individual threads do not overwrite the locks of other
threads within the same process, as is required by the POSIX standard for byte range
locks. On other platforms, this is a typedef to shared_fs_mutex::byte_ranges.

• cached_parent_handle_adapter<T>

Ordinarily, handles do not store any reference to their parent inode. They provide a member
function which will obtain a such a handle by fetching the current path of the inode and
looping the check to see if it has a leaf with the same inode and device number as the handle.
This, obviously enough, is expensive to call.

For use cases where a lot of race free sibling and parent operations occur, one can instantiate
any of the handle types using this adapter. It overrides some of the virtual functions to use a
cached parent inode implementation instead. These parent inode handles are kept in a global
registry, and are reference counted to minimise duplication. This very considerably improves
the performance of race free sibling and parent operations, at the cost of increasing the use of
�le descriptors, plus synchronising all threads on accessing the global registry.

There is an additional use case, and that is where the platform does not implement �le inode
path discovery reliably, which can a�ict some older editions of some kernels 13.

• map_view<T>

A map view is a non-owning span<T> of a map_handle's region. It implies a std::bless<T>

of the map_handle's byte mapped memory.

• mapped<T>

A mapped is an owning span<T> of a map_handle's region. It implies a std::bless<T> of the
map_handle's bytemapped memory, and when destructed it destroys the internal map_handle,
thus removing the map.

4.2.3 Planned generic �lesystem template algorithms yet to be reference implemented

• Persistent page allocator which is interruption safe, concurrency safe, lock free. This is ef-
fectively a persistent linked-list implementation of allocated and non-allocated regions within
the �le.

• The aforementioned B+ tree implementation [2] which is interruption safe, concurrency safe,
lock free.

• Persistent vector which is interruption safe, concurrency safe, lock free.

• Coroutine generators for valid, or all, �le extents.

• Compare two directory enumerations for di�erences (Ranges based).

13At the time of writing, OS X's path fetching API returns one of the paths for any hard link to the inode, randomly.
This is almost certainly a bug. FreeBSD does not reliably provide path fetching for �le inodes, but does for directory
inodes. From examination of the kernel source, this ought to be easy to �x. In both cases, fetching the path of a
directory inode is reliable, and thus via this adapter works around these platform-speci�c quirks and bugs.

34

• B+-tree friendly14 directory hierarchy deletion algorithm.

• B+-tree friendly directory hierarchy copy algorithm.

• B+-tree friendly directory hierarchy update (two and three way) algorithm.

4.3 Filesystem functionality deliberately omitted from this proposal

The eagle eyed will have spotted entire tracts of the �lesystem have been omitted from this initial
proposal:

• Permissions

Standardising this is a ton of extra work best pushed, in my opinion, into a later standardis-
ation e�ort.

• Extended attributes

These probably could be standardised without much e�ort, but I am also unsure of the demand
from the user base. Despite almost universal support in �le systems nowadays, they are not
widely used outside of MacOS, which is a shame.

• Directory change monitoring

This is surprisingly hard to implement correctly. Imagine writing an implementation which
scales up to 10M item directories and never misrepresents a change? The demands on handling
race conditions correctly are very detailed and tricky to get right in a performant and portable
way. I would like the change delta algorithms decided upon before tackling this one.

5 Design decisions, guidelines and rationale

The design decisions are as follows, in priority:

5.1 Race free �lesystem

As anyone familiar with programming the �lesystem is aware, it is riddled with race conditions
because most code is designed assuming that the �lesystem will not be changed by third parties
during a sequence of operations. Yet, not only can the �lesystem permute at any time, it is also
a bountiful source of unintended data loss and security exploits via Time-of-check-Time-of-use
(TOCTOU) failures.

As an example, imagine the following sequence of code which creates an anonymous inode to tem-
porarily hold data which will be thrown away on the close of the �le descriptor, perhaps to pass to
a child process or something:

14By `B+-tree friendly', I mean that the algorithm orders its operations to avoid the �lesystem's B+-tree rebal-
ancing frequently, as a naïve algorithm which almost everybody writes without thinking will do. This can improve
performance by around 20% on the major �ling systems.

35

1 int fd = ::open("/home/ned/db/foo", O_RDWR|O_CREAT|O_EXCL, S_IWUSR);
2 ::unlink("/home/ned/db/foo");
3 ::write(fd, child_data, ...);

Imagine that privileged code is executing that code. Now witness this:

1 int fd = ::open("/home/ned/db/foo",
2 O_RDWR|O_CREAT|O_EXCL, S_IWUSR);
3

4

5 ::unlink("/home/ned/db/foo"); // oh dear!

1

2

3 ::rename("/home/ned/db", "/home/ned/db.prev");
4 ::symlink("/etc", "/home/ned/db");

We have just seen unintended data loss where /etc/foo is unlinked instead of the programmer
intended /home/ned/db/foo.

Here is another common race on the �lesystem:

1 int storefd = ::open("/home/ned/db/store",
2 O_RDWR);
3

4

5 int indexfd = ::open("/home/ned/db/index",
6 O_RDWR);

1

2

3 ::rename("/home/ned/db", "/home/ned/db.prev");
4 ::rename("/home/ned/db.other", "/home/ned/db")

;

Now the index opened is not the correct index �le for the store �le. Misoperation and potential
data corruption is likely.

POSIX.1-2008, and every major operating system currently in use, �xes this via a race free �lesystem
API. Here are safe implementations:

1 int dirh = ::open("/home/ned/db", O_RDONLY|O_DIRECTORY);
2 int fd = ::openat(dirh, "foo", O_RDWR|O_CREAT|O_EXCL, S_IWUSR);
3 ::unlinkat(dirh, "foo", 0);

1 int dirh = ::open("/home/ned/db", O_RDONLY|O_DIRECTORY);
2 int storefd = ::openat(dirh, "store", O_RDWR);
3 int indexfd = ::openat(dirh, "index", O_RDWR);

The proposed low level �le i/o library considers race free �lesystem to be su�ciently important that
it is enabled by default i.e. it is always on unless you explicitly ask for it to be o�. The natural
question will be `How expensive is this design choice?'.

These are �gures for the reference library implementation running on various operating systems
and �ling systems. They were performed with a fully warm cache i.e. entirely from kernel memory
without accessing the device. They therefore represent a worst case overhead.

FreeBSD ZFS Linux ext4 Win10 NTFS

Delete File: 6.2% 11.6% 0%

36

The extra cost on POSIX for deletion is due to opening the inode's parent directory, checking that a
leaf item with the same name as the �le to be unlinked has the same inode and device as that of the
open handle, and if so then unlinking the leaf in that directory. This algorithm makes �le deletion
impervious to concurrent third party changes in the path, up to the containing directory, during
the deletion operation. A similar algorithm is used for renames, and added overhead is typically
around 10%.

One will surely note that overhead on Microsoft Windows is zero. The is because the NT kernel
provides much more extensive a race free �lesystem API than POSIX does. In particular, it provides
a by-open-�le-handle API for deletion and renaming so one need not implement any additional work
to achieve race freedom.

I appreciate that the choice to make race free �lesystem opt-out rather than opt-in will be a contro-
versial one on the committee, not least due to implementation concerns on the less major kernels15.
However it is my belief that correctness trumps performance for the default case, and for those
users who want the fastest possible �lesystem performance, race free �lesystem can be disabled per
object in the constructor.

5.2 No (direct) support for kernel threads

[Note: Asynchronous �le i/o support was removed after feedback from Rapperswil, and
thus this section no longer applies. It will be removed in the next revision. � end note]

5.3 Asynchronous �le i/o is much less important than synchronous �le i/o

[Note: Asynchronous �le i/o support was removed after feedback from Rapperswil, and
thus this section no longer applies. It will be removed in the next revision. � end note]

5.4 Pass through the raciness at the low level, abstract it away at the high level

Anyone with experience with the �le system knows how racy many of the kernel syscalls are. For
example, enumerating valid extents on POSIX is utterly racy due to a particularly bad choice of
enumeration API design. There are races in anything which involves a �lesystem path, by de�nition,
but there are also races in the ordering of reads and writes to a �le, the reported maximum extent
of a �le, and lots more races in what order all changes land on non-volatile storage, which a�ects
recoverability after sudden power loss.

It is not the business of a low level library to hide this stu�. So pass it through, unmodi�ed, and
supply higher level layers, templates, and algorithms which abstract away these core problems.

15See the description of cached_parent_handle_adapter<T> above. However I believe that kernel maintainers are
highly amenable to adding a syscall to unlink-by-fd or relink-by-fd, they just need to be given a business case for it.
It certainly is trivially easy to implement in any of the kernel sources I have investigated.

37

6 Draft Technical Speci�cation

A highly incomplete, work in progress, draft TS wording follows for Low level �le i/o. The following
in-progress WG21 papers � or near equivalents thereof � are assumed to have been standardised in
the presented wording:

1. [P0709] Zero-overhead deterministic exceptions: Throwing values

2. [P1028] SG14 status_code and standard error object for P0709 Zero-overhead deterministic
exceptions

3. [P1029] SG14 [[move_relocates]]

4. [P1030] Filesystem path views

5. [P1095] Zero overhead deterministic failure � A uni�ed mechanism for C and C++

We also assume the presence of a new language feature, bitfield. This is the combination of an
enumeration with individual bits in an unsigned integral value.

6.1 Scope [ll�o.scope]

This Technical Speci�cation speci�es requirements for implementations of an interface that computer
programs written in the C++ programming language may use to perform operations on �le systems
and their components, such as paths, regular �les, and directories. This Technical Speci�cation
is applicable to information technology systems that can access hierarchical �le systems, such as
those with operating systems that conform to the POSIX ([ll�o.norm.ref]) interface. This Technical
Speci�cation is applicable only to vendors who wish to provide the interface it describes.

6.2 Conformance [ll�o.conformance]

Conformance is speci�ed in terms of behavior. Ideal behavior is not always implementable, so the
conformance sub-clauses take that into account.

6.2.1 POSIX conformance [ll�o.conformance.posix]

Some behavior is speci�ed by reference to POSIX ([ll�o.norm.ref]). How such behavior is actually
implemented is unspeci�ed.

[Note: This constitutes an `as if' rule allowing implementations to call native operating
system or other API's. � end note]

Implementations are encouraged to provide such behavior as it is de�ned by POSIX. Implementa-
tions shall document any behavior that di�ers from the behavior de�ned by POSIX. Implementations
that do not support exact POSIX behavior are encouraged to provide behavior as close to POSIX
behavior as is reasonable given the limitations of the operating systems and �le systems available
to the vendor. If an implementation cannot provide any reasonable behavior for more than a small

38

subset of this speci�cation, an implementation of this library ought to not be provided by the
vendor.

6.2.2 Operating system dependent behavior conformance [ll�o.conform.os]

Some behavior is speci�ed as being operating system dependent ([ll�o.def.osdep]). The operating
system an implementation is dependent upon is implementation de�ned. It is permissible for an im-
plementation to be dependent upon an operating system emulator rather than the actual underlying
operating system.

6.3 References [ll�o.references]

The following referenced documents are indispensable for the application of this document. For
dated references, only the edition cited applies. For undated references, the latest edition of the
referenced document (including any amendments) applies.

• ISO/IEC 14882, Programming Language C++

• ISO/IEC 9945, Information Technology � Portable Operating System Interface (POSIX)

[Note: The programming language and library described in ISO/IEC 14882 is herein
called the C+ + Standard. The operating system interface described in ISO/IEC 9945
is herein called POSIX. � end note]

This Technical Speci�cation mentions commercially available operating systems for purposes of
exposition.16

Unless otherwise speci�ed, the whole of the C++ Standard's Library introduction [lib.library] is
included into this Technical Speci�cation by reference.

6.4 Terms and de�nitions [ll�o.terms]

For the purposes of this document, the terms and de�nitions given in the C++ Standard and the
following apply.

6.4.1 Cold cache [ll�o.terms.cold_cache]

This refers to the situation where any of the contents and/or metadata relating to a �lesystem entity
have not been cached into kernel memory, and an operation relating to that entity would require
the kernel to communicate with the storage device (which may take a non-deterministic period of
time).

16POSIX R© is a registered trademark of the IEEE. Mac OS R© is a registered trademark of Apple Inc. Windows R© is
a registered trademark of Microsoft Corporation. This information is given for the convenience of users of this
document and does not constitute an endorsement by ISO or IEC of these products.

39

6.4.2 File extents [ll�o.terms.extents]

A �le's ([fs.def.�le]) contents are stored as a sequence of zero to many allocated extents (some older
�ling systems can only use zero or one allocated extent). An allocated extent is a region bound
in between o�set zero and the maximum extent property of the �le (often incorrectly called `�le
length') which may store non-zero bits. The regions between allocated extents are not stored on
the device, and appear to i/o as all bits zero.

6.4.3 Filesystem entity [ll�o.terms.entity]

This refers to any single collection of extents on the �lesystem which has a POSIX �le serial number,
and an entity includes any metadata speci�cally describing it held by other entities. This includes
�les ([fs.def.�le]) and directories ([fs.def.directory]). Note that entities may have zero, or many,
canonical paths ([fs.def.link]) on the �lesystem.

6.4.4 File serial number [ll�o.terms.inode]

The POSIX �le serial number is an unsigned integer type identifying an item of storage on a
�lesystem. It is de�ned by POSIX to be unique to the speci�c �lesystem it is within (but not
unique within the whole system). A colloquial term for it is `inode'.

6.4.5 Kernel page cache [ll�o.terms.page_cache]

Operating system kernels may cache the data read from, and written to, a �lesystem entity. This
may be a single coherent uni�ed cache, or multiple incoherent caches. Metadata may be cached while
extents are not cached. The reference to `page' is that these caches typically work in granularities
of a memory page, so if extents are cached, it is to the nearest memory page alignment and the
cached region will be some round multiple of the memory page.

On uni�ed page cache architecture kernels, mapping a �le into memory directly maps a portion of
the kernel's own page cache for that �le's extents into the process. When a C++ program reads or
writes a mapped �le, it directly works with the kernel's cache of that �le.

6.4.6 Mapped �les [ll�o.terms.mapped_�les]

POSIX provides facilities to map the contents of some or all of a �le's extents into the address space
of a C++ program. Reads from the region read the data in the �le; writes to the region modify the
data in the �le.

6.4.7 Memory page [ll�o.terms.memory_page]

Many CPUs will map physical memory to the virtual addresses seen by the C++ program in units
of a memory page. A CPU may support zero, or many di�erent sizes of memory page.

40

[Note: For information, the memory page sizes for a x64 processor are 4Kb, 2Mb and
1Gb, with a potential additional future memory page size of 512Gb. For an ARM Cortex
A9 CPU, the memory page sizes are 4Kb, 64Kb, 1Mb and 16Mb. Other ARM CPUs
vary. For RISC-V, 4Kb + 4Mb or 4Kb + 2Mb + 16Gb memory page sizes are the most
common. � end note]

6.4.8 Page fault [ll�o.terms.page_fault]

Virtual memory systems implement work-on-demand via page faulting. Each memory page in a
C++ process can be marked by an operating system kernel to call the kernel upon the �rst read, or
write, inside a memory page. The kernel may then perform a number of actions. A very common
action to handle a page fault is allocating memory for that page and making the new allocation
available at that address, before resuming execution. Another very common action is that for
writable memory maps, to mark a page as dirty and needing later �ushing to physical storage.

Page faults signi�cantly complicate the estimation of upper bounds of execution times by introducing
a stochastic factor. In some cases, regions of memory can be prefaulted in order to eliminate the
potential for unexpected page faults later on.

6.4.9 Storage device [ll�o.terms.storage]

This is the hardware which retains the state of the �lesystem across power loss events. It may, on
some systems, be the same as random access memory.

6.4.10 File unique id [ll�o.terms.unique_id]

Under POSIX, each �le has an unsigned unique identi�cation number which is guaranteed to be
unique anywhere on the currently running system. POSIX de�nes it to be a combination of the
device id, and the �le serial number.

6.4.11 Virtual memory [ll�o.terms.virtual_memory]

This is the simulation of there being far more memory available to a C++ program than there is in
reality. It typically works in granularities of a memory page, and POSIX provides quite a few control
functions to enable C++ programs to manipulate virtual memory directly. Portable wrappers of
many of these control functions are provided by this speci�cation.

6.4.12 Warm cache [ll�o.terms.warm_cache]

This refers to the situation where all of the contents and metadata relating to a �lesystem entity
have been cached into kernel memory, and no further read operations relating to that entity would
be performed to the storage device. In this situation, any non-modifying operation ought to have
bounded execution times, as described in [ll�o.principles.latency_preserving].

41

6.5 General principles [ll�o.principles]

This is a low level library intended mainly as a building block for higher level C++ standard library
constructs such as Ranges, Containers, and Serialisation. It can be used directly by C++ programs,
but at the cost of having to do more work by hand than if the program used the higher level construct
instead.

6.5.1 Thinly wrap system calls [ll�o.principles.latency_preserving]

This speci�cation is designed to wrap proprietary kernel system calls into a set of common C++
functions which are portable across those platforms upon which C++ is implemented. User space
overhead between calling the functions in this speci�cation, and calling the kernel system calls
directly, shall be statistically unmeasurable in real world use cases, except where documented oth-
erwise.

Speci�cally:

1. The user space overhead to handle a kernel system call failure shall also be statistically un-
measurable in real world use cases.

2. The functions in this speci�cation shall be latency preserving, unless documented to not be so.
Latency preservation means that the shape of the sorted distribution of execution latencies
for repeated calls of the underlying kernel system call shall be preserved very closely by the
functions in this speci�cation. A constant vertical shift upwards to re�ect constant time
processing etc is, however, permitted.

Where a function is documented to be latency degrading, the potential causes of this latency
degradation shall be documented by this speci�cation.

The most noticeable consequence of this principle is that we do not allocate memory, except where
documented. Where memory is required for an operation, we accept bu�ers supplied by the user
instead.

6.5.2 Zero memory copies [ll�o.principles.zero_copy]

This speci�cation avoids causing the copying of any form memory wherever possible, even where it
is inconvenient to the library user. We do not copy �lesystem paths, scatter-gather bu�er lists, nor
data input/output, except where absolutely unavoidable.

6.5.3 Idealised random access storage [ll�o.principles.idealised]

This speci�cation models an idealised random access storage device, one whose curve of sorted
distribution of read latencies exactly matches that of the computer's random access memory. The
only di�erence over reads from random access memory is a constant added vertical shift.

[Note: It is important to note that writes are not considered in this idealisation. They
have an implicit memory allocation, and thus are not easily predictable. � end note]

42

Empirically, reads from a warm cached �le (i.e. whose contents and metadata are entirely in the
kernel page cache) ought to very closely match the curve of those of the idealised random access
storage device. This makes this idealisation useful to this speci�cation. In some implementations
e.g. those using persistent memory, the storage device is your random access memory, and thus by
de�nition the two are quite literally the same thing.

It is therefore important to note in the speci�cation wording below that for reads, it is from the
idealised storage device that is speci�ed. If the entity being read is not fully warm cached, the
wording (or lack thereof) giving latency guarantees does not apply.

[Note: It is unknowable whether a speci�c read from a �le just immediately read from
will be warm cached. For example, in a high memory pressure situation, the data just
read and cached may be evicted by the time the second read occurs, or a concurrent
update may have invalidated the cached region. � end note]

6.5.4 Genericity in i/o [ll�o.principles.io_genericity]

For each of the i/o types, a buffer_type, buffers_type and io_request<buffers_type> is de-
�ned as a member type or type alias. Each of the i/o type's read() functions will consume an
io_request<buffers_type>, and return a buffers_type (for write(), the corollary is io_request<const_buffers_type>,
and return a const_buffers_type).

This design principle is held consistent throughout. Intuitively, a �le handle will have a bu�er type of
span<byte>, a bu�ers type of span<buffer_type>, and an io_request<buffers_type> type which
takes the desired o�set to do the i/o at. A directory handle will have a bu�er type of path_view,
a bu�ers type of span<buffer_type> and an io_request<buffers_type> type which supplies the
directory enumeration options desired e.g. wildcards. A symlink handle will have a bu�er type of
path_view, a bu�ers type of path_view and an io_request<buffers_type> type which is nothing
more than a path_view, as after all a symbolic link can represent exactly one path.

This uniformity of design eases cognitive load on the programmer, and may aid generic code to
work with arbitrary i/o capable types, even very di�erent ones.

6.5.5 Race free �lesystem [ll�o.principles.race_free]

POSIX.1.2008 standardised a suite of kernel system calls which permit use of the �lesystem without
risk of race conditions caused by concurrent third party modi�cation of paths. At the time of
writing, these race free �lesystem extensions are very widely implemented in the major operating
systems, and given their considerable bene�t to writing secure code, we standardise these facilities
into C++.

This speci�cation discourages the use of absolute �lesystem paths, as these are inherently racy. All
manipulation operations such as rename or unlink are performed on an open handle instance. If this
speci�cation is accepted into the standard, is strongly recommended that all functions for accessing
the �le system in [fs.op] which take an absolute path ought to be deprecated, and their further use
discouraged by complete removal in the following standard.

43

This speci�cation reimplements directory enumeration via directory_handle::read() using a
mechanism very di�erent to [fs.class.directory_iterator], speci�cally one without the many correct-
ness and performance problems which have been reported by users on Stack Over�ow and other such
forums. It is recommended that filesystem::directory_entry and filesystem::directory_iterator
et al be rewritten to use this speci�cation's facilities instead as a backwards compatibility measure,
and that new code ought to use this speci�cation instead.

6.6 Header <io/algorithm/cached_parent_handle_adapter> [ll-
�o.io.algorithm.cached_parent_handle_adapter]

Todo

6.7 Header <io/algorithm/shared_fs_mutex> [ll-
�o.io.algorithm.shared_fs_mutex]

Todo

6.8 Header <io/deadline> [ll�o.io.deadline]

6.8.1 Synopsis [ll�o.io.deadline.synopsis]

1 namespace std { namespace experimental { namespace io { inline namespace v1 {
2 struct deadline
3 {
4 constexpr deadline() noexcept;
5 constexpr explicit operator bool() const noexcept;
6 template <class Clock, class Duration>
7 constexpr deadline(chrono::time_point<Clock, Duration> tp) noexcept;
8 template <class Rep, class Period>
9 constexpr deadline(chrono::duration<Rep, Period> d) noexcept;
10 };
11 } } } }

6.8.2 Class deadline [io.deadline.deadline]

A time deadline in either relative-to-now or absolute (system clock) terms. ABI stable, unlike the
templated chrono::duration<> or chrono::time_point<>.

Remarks: The type deadline must meet the TriviallyCopyable and StandardLayout concepts.
The internal storage must be of at least nanosecond resolution, but also able to store the full range
of dates that time_t can store17.

17A union of a struct timespec (absolute) and a 64-bit nanosecond count (relative) is suggested, but not required.

44

6.8.2.1 Class deadline constructors [ll�o.io.deadline.deadline.constructors]

constexpr deadline() noexcept;

E�ects: Constructs an invalid deadline.

Ensures: !*this

template <class Clock, class Duration>

constexpr deadline(chrono::time_point<Clock, Duration> tp) noexcept;

E�ects: Implicitly constructs either an absolute (Clock::is_steady == false) or duration-from-
now (Clock::is_steady == true) deadline.

Ensures: *this

template <class Rep, class Period>

constexpr deadline(chrono::duration<Rep, Period> d);

E�ects: Implicitly constructs a duration-from-now deadline.

Ensures: *this

6.9 Header <io/directory_handle> [ll�o.io.directory_handle]

Todo

6.10 Header <io/embedded_file_handle> [ll�o.io.embedded_�le_handle]

Todo

6.11 Header <io/embedded_file_source> [ll�o.io.embedded_�le_source]

Todo

6.12 Header <io/file_handle> [ll�o.io.�le_handle]

Todo

6.13 Header <io/handle> [ll�o.io.handle]

6.13.1 Synopsis [ll�o.io.handle.synopsis]

45

1 namespace std { namespace experimental { namespace io { inline namespace v1 {
2

3 class handle
4 {
5 public:
6 //! The path type used by this handle
7 using path_type = filesystem::path;
8 //! The file extent type used by this handle
9 using extent_type = unsigned long long;
10 //! The memory extent type used by this handle
11 using size_type = size_t;
12

13 //! The behaviour of the handle: does it read, read and write, or atomic append?
14 enum class mode : unsigned char // bit 0 set means writable
15 {
16 unchanged = 0,
17 none = 2, //!< No ability to read or write anything, but can synchronise (SYNCHRONIZE or 0)
18 attr_read = 4, //!< Ability to read attributes (FILE_READ_ATTRIBUTES|SYNCHRONIZE or O_RDONLY)
19 attr_write = 5, //!< Ability to read and write attributes
20 //!< (FILE_READ_ATTRIBUTES|FILE_WRITE_ATTRIBUTES|SYNCHRONIZE or O_RDONLY)
21 read = 6, //!< Ability to read
22 //!< (READ_CONTROL|FILE_READ_DATA|FILE_READ_ATTRIBUTES|FILE_READ_EA|SYNCHRONISE

or O_RDONLY)
23 write = 7, //!< Ability to read and write
24 //!< (READ_CONTROL|FILE_READ_DATA|FILE_READ_ATTRIBUTES|FILE_READ_EA|

FILE_WRITE_DATA|FILE_WRITE_ATTRIBUTES|FILE_WRITE_EA|FILE_APPEND_DATA|
SYNCHRONISE or O_RDWR)

25 append = 9 //!< All mainstream OSs and CIFS guarantee this is atomic with respect to all
26 //!< other appenders (FILE_APPEND_DATA|SYNCHRONISE or O_APPEND)
27 };
28

29 //! On opening, do we also create a new file or truncate an existing one?
30 enum class creation : unsigned char
31 {
32 open_existing = 0, //!< Open an existing file.
33 only_if_not_exist, //!< Create a new file only if one does not exist.
34 if_needed, //!< Create a new file if one does not exist.
35 truncate //!< Atomically truncate on open, leaving creation date unmodified.
36 };
37

38 //! What i/o on the handle will complete immediately due to kernel caching
39 enum class caching : unsigned char // bit 0 set means safety fsyncs enabled
40 {
41 unchanged = 0,
42 none = 1, //!< No caching whatsoever, all reads and writes come from storage
43 //!< (i.e. ‘O_DIRECT|O_SYNC‘). Align all i/o to 4Kb boundaries for this

to work. ‘flag_disable_safety_fsyncs‘ can be used here.
44 only_metadata = 2, //!< Cache reads and writes of metadata but avoid caching data
45 //!< (‘O_DIRECT‘), thus i/o here does not affect other cached data for

other handles. Align all i/o to 4Kb boundaries for this to work.
46 reads = 3, //!< Cache reads only. Writes of data and metadata do not complete
47 //!< until reaching storage (‘O_SYNC‘). ‘flag_disable_safety_fsyncs‘ can

be used here.
48 reads_and_metadata = 5, //!< Cache reads and writes of metadata, but writes of data do not

46

49 //!< complete until reaching storage (‘O_DSYNC‘). ‘
flag_disable_safety_fsyncs‘ can be used here.

50 all = 4, //!< Cache reads and writes of data and metadata so they complete
51 //!< immediately, sending writes to storage at some point when the kernel

decides (this is the default file system caching on a system).
52 safety_fsyncs = 7, //!< Cache reads and writes of data and metadata so they complete
53 //!< immediately, but issue safety fsyncs at certain points. See

documentation for ‘flag_disable_safety_fsyncs‘.
54 temporary = 6 //!< Cache reads and writes of data and metadata so they complete
55 //!< immediately, only sending any updates to storage on last handle

close in the system or if memory becomes tight as this file is
expected to be temporary (Windows and FreeBSD only).

56 };
57

58 //! Bitwise flags which can be specified
59 bitfield flag
60 {
61 none = 0, //!< No flags
62

63 /*! Unlinks the file on handle close. On POSIX, this simply unlinks whatever is pointed
64 to by ‘path()‘ upon the call of ‘close()‘ if and only if the inode matches. On Windows,
65 if you are on Windows 10 1709 or later, exactly the same thing occurs. If on previous
66 editions of Windows, the file entry does not disappears but becomes unavailable for
67 anyone else to open with an ‘errc::resource_unavailable_try_again‘ error return. Because
68 this is confusing, unless the ‘win_disable_unlink_emulation‘ flag is also specified, this
69 POSIX behaviour is somewhat emulated on older Windows by renaming the file to a random
70 name on ‘close()‘ causing it to appear to have been unlinked immediately.
71 */
72 unlink_on_first_close = 1U << 0U,
73

74 /*! Some kernel caching modes have unhelpfully inconsistent behaviours
75 in getting your data onto storage, so by default unless this flag is
76 specified we add extra fsyncs to the following operations for the
77 caching modes specified below:
78 - truncation of file length either explicitly or during file open.
79 - closing of the handle either explicitly or in the destructor.
80

81 Additionally on Linux only to prevent loss of file metadata:
82 - On the parent directory whenever a file might have been created.
83 - On the parent directory on file close.
84

85 This only occurs for these kernel caching modes:
86 - caching::none
87 - caching::reads
88 - caching::reads_and_metadata
89 - caching::safety_fsyncs
90 */
91 disable_safety_fsyncs = 1U << 2U,
92

93 /*! ‘file_handle::unlink()‘ could accidentally delete the wrong file if someone has
94 renamed the open file handle since the time it was opened. To prevent this occuring,
95 where the OS doesn’t provide race free unlink-by-open-handle, we compare the inode of
96 the path we are about to unlink with that of the open handle before unlinking.
97 Setting this flag disables that safety check.
98 */
99 disable_safety_unlinks = 1U << 3U,

47

100

101 /*! Ask the OS to disable prefetching of data. This can improve random
102 i/o performance.
103 */
104 disable_prefetching = 1U << 4U,
105

106 /*! Ask the OS to maximise prefetching of data, possibly prefetching the entire file
107 into kernel cache. This can improve sequential i/o performance.
108 */
109 maximum_prefetching = 1U << 5U,
110

111 win_disable_unlink_emulation = 1U << 24U, //!< See the documentation for ‘unlink_on_first_close‘
112

113 /*! Microsoft Windows NTFS, having been created in the late 1980s, did not originally
114 implement extents-based storage and thus could only represent sparse files via
115 efficient compression of intermediate zeros. With NTFS v3.0 (Microsoft Windows 2000),
116 a proper extents-based on-storage representation was added, thus allowing only 64Kb
117 extent chunks written to be stored irrespective of whatever the maximum file extent
118 was set to.
119

120 For various historical reasons, extents-based storage is disabled by default in newly
121 created files on NTFS, unlike in almost every other major filing system. You have to
122 explicitly "opt in" to extents-based storage.
123

124 As extents-based storage is nearly cost free on NTFS, llfio by default opts in to
125 extents-based storage for any empty file it creates. If you don’t want this, you
126 can specify this flag to prevent that happening.
127 */
128 win_disable_sparse_file_creation = 1U << 25U,
129

130 overlapped = 1U << 28U, //!< On Windows, create any new handles with OVERLAPPED semantics
131 byte_lock_insanity = 1U << 29U, //!< Using insane POSIX byte range locks
132 anonymous_inode = 1U << 30U //!< This is an inode created with no representation on the

filing system
133 }
134

135 public:
136 //! Constructs an invalid instance
137 constexpr handle() noexcept;
138

139 //! Adopts a supplied native handle type
140 explicit constexpr handle(native_handle_type h, caching caching = caching::none, flag flags = flag::

none) noexcept;
141

142 //! Closes the handles if it is valid
143 virtual ~handle() noexcept;
144

145 // Copy construction is expensive, use clone()
146 handle(const handle &) = delete;
147 handle &operator=(const handle &o) = delete;
148

149 // Moves of handle relocate in memory
150 constexpr handle(handle &&o) noexcept [[move_relocates];
151 handle &operator=(handle &&o) noexcept;
152 void swap(handle &o) noexcept;
153

48

154 //! Retrieve the current path of the open handle
155 virtual path_type current_path() const throws(file_io_error) [[no_side_effects]];
156

157 //! Close the handle
158 virtual void close() throws(file_io_error);
159 //! Clone the handle
160 handle clone() const throws(file_io_error);
161 //! Release the native handle type from management
162 virtual native_handle_type release() noexcept;
163

164 //! True if the handle is valid (and usually open)
165 bool is_valid() const noexcept;
166 //! True if the handle is readable
167 bool is_readable() const noexcept;
168 //! True if the handle is writable
169 bool is_writable() const noexcept;
170 //! True if the handle is append only
171 bool is_append_only() const noexcept;
172 //! Changes whether this handle is append only or not.
173 virtual void set_append_only(bool enable) throws(file_io_error);
174

175 //! True if overlapped
176 bool is_overlapped() const noexcept;
177 //! True if seekable
178 bool is_seekable() const noexcept;
179 //! True if requires aligned i/o
180 bool requires_aligned_io() const noexcept;
181

182 //! True if a regular file or device
183 bool is_regular() const noexcept;
184 //! True if a directory
185 bool is_directory() const noexcept;
186 //! True if a symlink
187 bool is_symlink() const noexcept;
188 //! True if a memory section
189 bool is_section() const noexcept;
190

191 //! Kernel cache strategy used by this handle
192 caching kernel_caching() const noexcept;
193 //! True if the handle uses the kernel page cache for reads
194 bool are_reads_from_cache() const noexcept;
195 //! True if writes are safely on storage on completion
196 bool are_writes_durable() const noexcept;
197 //! True if issuing safety fsyncs is on
198 bool are_safety_fsyncs_issued() const noexcept;
199

200 //! The flags this handle was opened with
201 flag flags() const noexcept;
202 //! The native handle used by this handle
203 native_handle_type native_handle() const noexcept;
204 };
205 inline std::ostream &operator<<(std::ostream &s, const handle &v);
206 inline std::ostream &operator<<(std::ostream &s, const handle::mode &v);
207 inline std::ostream &operator<<(std::ostream &s, const handle::creation &v);
208 inline std::ostream &operator<<(std::ostream &s, const handle::caching &v);
209 inline std::ostream &operator<<(std::ostream &s, const handle::flag &v);

49

210 } } } }

6.13.2 Class handle [ll�o.io.handle.handle]

An io::native_handle_type instance, whose lifetime is managed by the lifetime of this object.

Remarks: The type handle must meet the MoveRelocating concept.

6.13.2.1 Class handle constructors and destructor [ll�o.io.handle.handle.constructors]

constexpr handle() noexcept;

E�ects: Constructs an invalid handle.

Ensures: !is_valid()

explicit constexpr handle(native_handle_type h, caching caching = caching::none, flag flags = flag::none) noexcept;

E�ects: Adopt a native_handle_type instance.

Ensures: is_valid()

constexpr handle(handle &&o) noexcept;

E�ects: Moves the management of the native_handle_type out of o and into *this.

Ensures: !o.is_valid()

virtual ~handle() noexcept;

E�ects: If this handle is valid, call close(). If close() fails, terminate the process.

Ensures: !is_valid(), and that the system resources managed by the handle are released.

6.13.2.2 Class handle assignment and swap [ll�o.io.handle.handle.assignments]

handle &operator=(handle &&o) noexcept;

E�ects: If this handle is valid, call close(). If close() fails, terminate the process. Then move
the management of the native_handle_type out of o and into *this.

Ensures: !o.is_valid(), and that the system resources formerly managed by the handle are re-
leased.

void swap(handle &o) noexcept;

50

E�ects: Exchange the management of the two native_handle_type between o and *this.

6.13.2.3 Class handle observers [ll�o.io.handle.handle.observers]

virtual path_type current_path() const throws(file_io_error) [[no_side_effects]];

E�ects: Returns the current path of the hard link originally opened by this handle, as is said by the
operating system. If the hard link originally opened by this handle has been unlinked, an empty
path is returned. If somebody with an open handle to the same hard link which has been unlinked
then relinks it, the new path is returned.

Remarks: The path returned may be very di�erent to the path by which the handle was originally
opened (e.g. due to a third party renaming it, or due to canonicalisation of a symbolically linked
input path), but it must be to the original hard link opened, and not to some arbitrary path which
links to the same inode. This implies that either the kernel, or the standard library implementation,
must implement hard link tracking by keeping with each kernel �le descriptor which hard link it
was opened with. At the time of writing, the Linux and Microsoft Windows kernels fully implement
this; FreeBSD has a partial implementation; Apple MacOS does not implement this. It is permitted
on kernels without complete kernel support to implement hard link tracking in the standard library
using a shared memory region � in this case, only programs using standard C++ library facilities
to work with the �ling system would have de�ned behaviour.

[Note: It is suggested that if your operating system does not fully implement hard link
tracking, its kernel ought to be �xed in preference to emulating the support using shared
memory. � end note]

Throws: Many possible causes of failure, including failure to allocate memory, any failure returned
by the kernel (that the handle does not refer to a resource with a path, that the handle is invalid),
etc.

Complexity: This is a latency degrading function, which may make several kernel syscalls, allocate
a number of items from memory, perform unbounded loops of checks of properties of �lesystem
entities, and perform other non-deterministic processing, including waits to hold multiple kernel
mutexes.

bool is_valid() const noexcept;

Returns: True if this handle is managing a valid native handle type.

bool is_readable() const noexcept;

Returns: True if this handle is managing a native handle type which can be read from.

bool is_writable() const noexcept;

Returns: True if this handle is managing a native handle type which can be written to.

51

bool is_append_only() const noexcept;

Returns: True if this handle is managing a native handle type which can be written to, but only to
append to whatever its current maximum extent is.

bool is_seekable() const noexcept;

Returns: True if this handle observes the o�set speci�ed during a read or write, false if the o�set is
ignored.

bool requires_aligned_io() const noexcept;

Returns: True if this handle requires reads and writes to be performed on a storage device deter-
mined alignment, and in round multiples of that alignment.

bool is_regular() const noexcept;

Returns: True if this handle represents a regular �le or device.

bool is_directory() const noexcept;

Returns: True if this handle represents a directory.

bool is_symlink() const noexcept;

Returns: True if this handle represents a symbolic link.

bool is_section() const noexcept;

Returns: True if this handle represents a mappable section of memory.

caching kernel_caching() const noexcept;

Returns: The caching value this handle was constructed with.

bool are_reads_from_cache() const noexcept;

Returns: True if reads from this handle come from kernel page cache memory.

bool are_writes_durable() const noexcept;

Returns: True if writes to this handle do not complete until all of the data written is wholly upon
the storage device.

bool are_safety_fsyncs_issued() const noexcept;

52

Returns: True if safety �ushes of metadata to storage are automatically issued by the library.

flag flags() const noexcept;

Returns: The �ags value this handle was constructed with.

native_handle_type native_handle() const noexcept;

Returns: The native handle type managed by this handle instance.

6.13.2.4 Class handle modi�ers [ll�o.io.handle.handle.modi�ers]

virtual void close() throws(file_io_error);

E�ects: If this handle is valid, close the managed native handle type with the kernel, releasing any
resources.

Ensures: !is_valid(), and that the system resources formerly managed by the handle are released.

Throws: Any failure returned by the kernel.

handle clone() const throws(file_io_error);

E�ects: If this handle is valid, duplicates the managed native handle type with the kernel. If this
handle is not valid, returns a similarly invalid handle instance.

Throws: Any failure returned by the kernel.

virtual native_handle_type release() noexcept;

E�ects: Release the managed native handle type from management by this handle instance.

Ensures: !is_valid().

virtual void set_append_only(bool enable) throws(file_io_error);

E�ects: Sets whether writes to this handle (atomically) append to whatever its current maximum
extent is, or whether the o�set speci�ed during the write is used.

Ensures: is_append_only() == enable, is_seekable() == !enable

6.14 Header <io/io_handle> [ll�o.io.io_handle]

6.14.1 Synopsis [ll�o.io.io_handle.synopsis]

53

1 namespace std { namespace experimental { namespace io { inline namespace v1 {
2

3 class io_handle : public handle
4 {
5 public:
6 using path_type = handle::path_type;
7 using extent_type = handle::extent_type;
8 using size_type = handle::size_type;
9 using mode = handle::mode;
10 using creation = handle::creation;
11 using caching = handle::caching;
12 using flag = handle::flag;
13

14 //! The scatter buffer type used by this handle.
15 //! Guaranteed to be ‘TrivialType‘ and ‘StandardLayoutType‘ and to match
16 //! in layout ‘struct iovec’ on POSIX.
17 using buffer_type = span<byte>;
18 //! The gather buffer type used by this handle.
19 //! Guaranteed to be ‘TrivialType‘ and ‘StandardLayoutType‘ and to match
20 //! in layout ‘struct iovec’ on POSIX.
21 using const_buffer_type = span<const byte>;
22

23 //! The scatter buffers type used by this handle.
24 //! Guaranteed to be ‘TrivialType‘ apart from construction, and ‘StandardLayoutType‘.
25 using buffers_type = span<buffer_type>;
26 //! The gather buffers type used by this handle.
27 //! Guaranteed to be ‘TrivialType‘ apart from construction, and ‘StandardLayoutType‘.
28 using const_buffers_type = span<const_buffer_type>;
29

30 //! The i/o request type used by this handle.
31 //! Guaranteed to be ‘TrivialType‘ apart from construction, and ‘StandardLayoutType‘.
32 template <class T> struct io_request
33 {
34 T buffers{};
35 extent_type offset{0};
36

37 //! Default constructor
38 io_request() = default;
39 //! Implicit construction from a set of buffers, and an offset
40 constexpr io_request(T _buffers, extent_type _offset);
41 };
42

43 public:
44 //! Default constructor
45 io_handle() = default;
46 ~io_handle() = default;
47

48 //! Construct a handle from a supplied native handle
49 constexpr explicit io_handle(native_handle_type h, caching caching = caching::none, flag flags =

flag::none) noexcept;
50 //! Explicit conversion from handle permitted
51 explicit constexpr io_handle(handle &&o) noexcept;
52 //! Move construction permitted
53 io_handle(io_handle &&) = default;
54 //! No copy construction (use ‘clone()‘)

54

55 io_handle(const io_handle &) = delete;
56 //! Move assignment permitted
57 io_handle &operator=(io_handle &&) = default;
58 //! No copy assignment
59 io_handle &operator=(const io_handle &) = delete;
60

61 /*! \brief The *maximum* number of buffers which a single read or write syscall can process
62 at a time for this specific open handle.
63 */
64 virtual size_t max_buffers() const noexcept [[no_side_effects]];
65

66 //! Read data from the open handle.
67 virtual buffers_type read(io_request<buffers_type> reqs, deadline d = deadline()) throws(

file_io_error)
68 [[no_side_effects]]
69 [[ensures: ensure_blessed(reqs.buffers)]]
70 [[ensures: ensure_blessed(return)]];
71

72 //! Write data to the open handle.
73 virtual const_buffers_type write(io_request<const_buffers_type> reqs, deadline d = deadline())

throws(file_io_error);
74 //! Convenience overload taking an initialiser list
75 size_type write(extent_type offset, initializer_list<const_buffer_type> lst, deadline d = deadline()

) throws(file_io_error);
76

77 /*! \brief Issue a write reordering barrier such that writes preceding the barrier will reach
78 storage before writes after this barrier.
79 */
80 virtual const_buffers_type barrier(io_request<const_buffers_type> reqs = {},
81 bool wait_for_device = false, bool and_metadata = false,
82 deadline d = deadline()) throws(file_io_error) = 0
83 [[no_visible_side_effects]];
84

85 /*! \class extent_guard
86 \brief RAII holder a locked extent of bytes in a file.
87 */
88 class extent_guard
89 {
90 public:
91 extent_guard(const extent_guard &) = delete;
92 extent_guard &operator=(const extent_guard &) = delete;
93

94 //! Default constructor
95 constexpr extent_guard();
96 //! Move constructor
97 extent_guard(extent_guard &&o) noexcept;
98 //! Move assign
99 extent_guard &operator=(extent_guard &&o) noexcept;
100 ~extent_guard();
101 //! True if extent guard is valid
102 explicit operator bool() const noexcept;
103 //! True if extent guard is invalid
104 bool operator!() const noexcept;
105

106 //! The io_handle to be unlocked
107 io_handle *handle() const noexcept;

55

108 //! Sets the io_handle to be unlocked
109 void set_handle(io_handle *h) noexcept;
110 //! The extent to be unlocked
111 std::tuple<extent_type, extent_type, bool> extent() const noexcept;
112

113 //! Unlocks the locked extent immediately
114 void unlock() noexcept;
115

116 //! Detach this RAII unlocker from the locked state
117 void release() noexcept;
118 };
119

120 /*! \brief Tries to lock the range of bytes specified for shared or exclusive access. Be aware this
121 passes through the same semantics as the underlying OS call, including any POSIX insanity present on
122 your platform:
123 - Any fd closed on an inode must release all byte range locks on that inode for all
124 other fds. If your OS isn’t new enough to support the non-insane lock API,
125 ‘flag::byte_lock_insanity‘ will be set in flags() after the first call to this function.
126 - Threads replace each other’s locks, indeed locks replace each other’s locks.
127 You almost cetainly should use your choice of an ‘algorithm::shared_fs_mutex::*‘ instead of this
128 as those are more portable and performant.
129 \warning This is a low-level API which you should not use directly in portable code. Another issue
130 is that atomic lock upgrade/downgrade, if your platform implements that (you should assume
131 it does not in portable code), means that on POSIX you need to *release* the old ‘extent_guard‘
132 after creating a new one over the same byte range, otherwise the old ‘extent_guard‘’s
133 destructor will simply unlock the range entirely. On Windows however upgrade/downgrade
134 locks overlay, so on that platform you must *not* release the old
135 ‘extent_guard‘. Look into ‘algorithm::shared_fs_mutex::safe_byte_ranges‘ for a portable solution.
136 \return An extent guard, the destruction of which will call unlock().
137 \param offset The offset to lock. Note that on POSIX the top bit is always cleared before use
138 as POSIX uses signed transport for offsets. If you want an advisory rather than mandatory lock
139 on Windows, one technique is to force top bit set so the region you lock is not the one you will
140 i/o - obviously this reduces maximum file size to (2^63)-1.
141 \param bytes The number of bytes to lock. Zero means lock the entire file using any more
142 efficient alternative algorithm where available on your platform (specifically, on BSD and OS X use
143 flock() for non-insane semantics).
144 \param exclusive Whether the lock is to be exclusive.
145 \param d An optional deadline by which the lock must complete, else it is cancelled.
146 \errors Any of the values POSIX fcntl() can return, ‘errc::timed_out‘, ‘errc::not_supported‘ may be
147 returned if deadline i/o is not possible with this particular handle configuration (e.g.
148 non-overlapped HANDLE on Windows).
149 \mallocs The default synchronous implementation in file_handle performs no memory allocation.
150 The asynchronous implementation in async_file_handle performs one calloc and one free.
151 */
152 virtual extent_guard lock(extent_type offset, extent_type bytes, bool exclusive = true, deadline d =

deadline()) throws(file_io_error) [[no_visible_side_effects]];
153

154 extent_guard try_lock(extent_type offset, extent_type bytes, bool exclusive = true) throws(
file_io_error) [[no_visible_side_effects]];

155

156 //! \overload Locks for shared access
157 extent_guard lock(io_request<buffers_type> reqs, deadline d = deadline()) throws(file_io_error) [[

no_visible_side_effects]];
158 //! \overload Locks for exclusive access
159 extent_guard lock(io_request<const_buffers_type> reqs, deadline d = deadline()) throws(file_io_error

) [[no_visible_side_effects]];

56

160

161 /*! \brief Unlocks a byte range previously locked.
162 \param offset The offset to unlock. This should be an offset previously locked.
163 \param bytes The number of bytes to unlock. This should be a byte extent previously locked.
164 \errors Any of the values POSIX fcntl() can return.
165 \mallocs None.
166 */
167 virtual void unlock(extent_type offset, extent_type bytes) noexcept [[no_visible_side_effects]];
168 };
169

170 } } } }

6.14.2 Class io_handle [ll�o.io.io_handle.io_handle]

A re�nement of handle capable of scatter-gather reading and writing data, as well as locking regions
of data for shared or exclusive access. As the base handle type for all speci�c implementations of
i/o handle, using this abstracted base class is considerably more complex to get correct that using
a speci�c implementation type, where usage behaviour guarantees are known. Normative guidance
notes for correct use is therefore given in some cases.

Remarks: The type io_handle must meet the MoveRelocating concept.

6.14.2.1 Class io_handle constructors [ll�o.io.io_handle.io_handle.constructors]

constexpr explicit io_handle(native_handle_type h, caching caching = caching::none,

flag flags = flag::none) noexcept;

E�ects: Adopt a native_handle_type instance.

Ensures: is_valid()

6.14.2.2 Class io_handle observers [ll�o.io.handle.handle.observers]

virtual size_t max_buffers() const noexcept [[no_side_effects]];

Returns: The maximum number of i/o bu�ers which a single read or write function can atomically
process at a time for this speci�c open handle. This enables programs to not prepare longer scatter-
gather bu�ers than the system is capable of.

[Note: The actual maximum number of i/o bu�ers which a single read or write function
can process at a time is dependent upon available system resources at the time of the
call. As an example of how low they can be, MAC OS permits a maximum of sixteen
asynchronous i/o operations to be in �ight per process. � end note]

[Note: If this function returns 1, scatter-gather i/o is implemented as a loop over the
supplied bu�er list. In this situation, there is no particular bene�t to supply more than
one bu�er per operation, apart from programmer convenience. � end note]

57

6.14.2.3 Class io_handle modi�ers [ll�o.io.handle.handle.modi�ers]

virtual buffers_type read(io_request<buffers_type> reqs,

deadline d = deadline()) throws(file_io_error)

[[no_side_effects]]

[[ensures: ensure_blessed(reqs.buffers)]]

[[ensures: ensure_blessed(return)]];

E�ects: For each bu�er, if the address of the bu�er returned is that of the bu�er supplied:

• Input bu�ers are �lled to no further than their size on input, with data read from the open
handle at the o�set supplied by the caller (if the open handle supports o�set seeks), proceeding
byte by byte from that o�set onwards.

• If the handle was opened with mode::append i.e. is_append_only() is true, behaviour is
implementation de�ned.

• At least one byte of the �rst of the non-zero sized input bu�ers will be �lled.

• Each bu�er is wholly �lled before the next bu�er is �lled.

• If a bu�er is not completely �lled, its size in the returned bu�ers will be set to the bytes
�lled into that bu�er (which includes zero bytes �lled). As the individual bu�ers returned are
the individual bu�ers input (i.e. the array of buffer_type pointed to by buffers_type), you
must ensure that the individual bu�ers input you supply are safe to write to.

• If the deadline is default constructed, the function may block, possibly forever, until at least
one byte is read, or possibly until all requested bytes are read, or anywhere in between de-
pending on implementation.

If the deadline speci�es an absolute deadline, and the system clock passes that deadline, any
pending i/o will be cancelled and a failure comparing equal to errc::timed_out shall be
returned.

If the deadline speci�es an elapsed period and the i/o has not completed after that period,
any pending i/o will be cancelled and a failure comparing equal to errc::timed_out shall be
returned.

If the deadline speci�es a zeroed deadline, the implementation will �ll as many bu�ers as it
can without blocking, and return immediately.

[Note: Cancelling pending i/o may be a blocking operation of indeterminite length
for some implementations i.e. there is no guarantee that the function will return at
a time anywhere close to what you requested. � end note]

If the address of the bu�er returned is not that of the bu�er supplied:

• The address and size returned points to data which would have been �lled had the bu�ers
input been �lled, same as above.

• You may not write into the bu�er in this situation as the memory does not belong to you.

58

• You are guaranteed that the memory region returned to you will exist as long as this handle
instance remains valid.

[Note: It is possible for implementations to return a mixture of �lled bu�ers and bu�ers
pointing elsewhere. If you need to test that your code using io_handle works correctly,
random_file_handle can be con�gured to return random mixes of �lled bu�ers input
and bu�ers pointing elsewhere. � end note]

Other things to consider:

• Not all bu�ers supplied may be �lled during the call, even if the data is available, and may
require unlimited subsequent calls to complete the original scatter �ll request. In this situation,
you should adjust the bu�ers input based on the bu�ers returned, and perform the operation
again, looping this procedure until all original input bu�ers are �lled. See below for an
illustrative example.

• It is implementation de�ned whether concurrent reads of one or more bu�ers may see partial
completion of any concurrent writes to the same o�set and extent. In particular, a concurrent
write may not update in a linear lower to upper o�set fashion � it may appear to update a
later o�set �rst, then an earlier one, then a middle one, in any arbitrary (i.e. unpredictable)
order.

• It is implementation de�ned if a read exceeds any current maximum extent of the storage
referenced by the handle. It may clamp bu�ers returned to that maximum extent (i.e. by
partially �lling the last �llable bu�er, and marking all remaining bu�ers as being un�lled), or
�ll with garbage instead, or clamp to a di�erent maximum extent, or any other behaviour.

• It is implementation de�ned whether any system current �le pointer for the open handle is
a�ected by this operation.

• If you perform a read after a write, only fully completed writes to the same handle instance
you read from are guaranteed to be wholly observable to the read. It is implementation de�ned
whether, or when, writes to other handles to the same resource will become visible to reads
from a separate handle instance.

Throws: There are multiple causes of failure: (i) any failure returned by the kernel (that the handle
is invalid, that the handle is not open for reading, that insu�cient system resources are available
to perform the read, that the operation was cancelled by another thread etc) (ii) if a non-in�nite
deadline is supplied and this handle does not support deadline i/o, may fail with an error comparing
equal to errc::function_not_supported (iii) if a non-in�nite deadline is supplied and that deadline
expired, an error comparing equal to errc::timed_out will be thrown.

Complexity: Depending on implementation, this may be a latency preserving function in the warm
cache use case, where the curve of the sorted latency distribution will closely match that of the curve
of copying memory at the same o�sets over the same extent of storage. However it may also be a
latency degrading function which allocates memory, or performs network access of indeterminate
duration. At this abstract level in the type hierarchy, you cannot know which. You should use a
re�nement of this type directly if you want stronger guarantees.

[Example: Given the conditions of use just described, it will be non-trivial to use this

59

function correctly via io_handle. It is recommended that the �rst course of action is
to use a derived type with much stronger guarantees � such as file_handle � where
most of the complexity below can be dispensed with. If however you can have no idea
what the implementation type actually is, one ends up with code like the below function
which will retry individual read operations until a scatter bu�er list is �lled. Note that
the below code may hang forever depending on the io_handle implementation, which is
why it is not supplied as part of the proposed standard library. It also does not handle
large gather bu�er lists, which would over�ow the stack.

1 inline io_handle::buffers_type read_all(io_handle &h, io_handle::io_request<io_handle::
buffers_type> reqs, deadline d = deadline()) throws(file_io_error)

2 {
3 // Record beginning if deadline is specified
4 chrono::steady_clock::time_point began_steady;
5 if(d && d.steady)
6 began_steady = chrono::steady_clock::now();
7

8 // Take copy of input buffers onto stack, and set output buffers to buffers supplied
9 auto *input_buffers_mem = reinterpret_cast<io_handle::buffer_type *>(alloca(reqs.buffers

.size() * sizeof(io_handle::buffer_type)));
10 auto *input_buffers_sizes = reinterpret_cast<io_handle::extent_type *>(alloca(reqs.

buffers.size() * sizeof(io_handle::extent_type)));
11 io_handle::buffers_type output_buffers(reqs.buffers);
12 io_handle::io_request<io_handle::buffers_type> creq({input_buffers_mem, reqs.buffers.

size()}, 0);
13 for(size_t n = 0; n < reqs.buffers.size(); n++)
14 {
15 // Copy input buffer to stack and retain original size
16 creq.buffers[n] = reqs.buffers[n];
17 input_buffers_sizes[n] = reqs.buffers[n].size();
18 // Set output buffer length to zero
19 output_buffers[n] = io_handle::buffer_type{output_buffers[n].data(), 0};
20 }
21

22 // Track which output buffer we are currently filling
23 size_t idx = 0;
24 do
25 {
26 // New deadline for this loop
27 deadline nd;
28 if(d)
29 {
30 if(d.steady)
31 {
32 auto ns = chrono::duration_cast<chrono::nanoseconds>((began_steady + chrono::

nanoseconds(d.nsecs)) - chrono::steady_clock::now());
33 if(ns.count() < 0)
34 nd.nsecs = 0;
35 else
36 nd.nsecs = ns.count();
37 }
38 else
39 nd = d;
40 }
41 // Partial fill buffers with current request

60

42 io_handle::buffers_type filled = h.read(creq, nd);
43

44 // Adjust output buffers by what was filled, and prepare input
45 // buffers for next round of partial fill
46 for(size_t n = 0; n < creq.buffers.size(); n++)
47 {
48 // Add the amount of this buffer filled to next offset read and to output buffer
49 auto &input_buffer = creq.buffers[n];
50 auto &output_buffer = output_buffers[idx + n];
51 creq.offset += input_buffer.size();
52 output_buffer = io_handle::buffer_type{output_buffer.data(), output_buffer.size() +

input_buffer.size()};
53 // Adjust input buffer to amount remaining
54 input_buffer = io_handle::buffer_type{input_buffer.data() + input_buffer.size(),

input_buffers_sizes[idx + n] - output_buffer.size()};
55 }
56

57 // Remove completely filled input buffers
58 while(!creq.buffers.empty() && creq.buffers[0].size() == 0)
59 {
60 creq.buffers = io_handle::buffers_type(creq.buffers.data() + 1, creq.buffers.size()

- 1);
61 ++idx;
62 }
63 } while(!creq.buffers.empty());
64 return output_buffers;
65 }

� end example]

virtual const_buffers_type write(io_request<const_buffers_type> reqs,

deadline d = deadline()) throws(file_io_error);

E�ects: For each bu�er supplied, write the speci�ed data and amount of data to the speci�ed o�set
into the open handle (if the open handle supports o�set seeks), incrementing the o�set by each
bu�er written in turn.

If the handle was opened with mode::append i.e is_append_only() is true, the speci�ed o�set shall
be ignored, and instead the maximum extent of the �le will be atomically incremented by the sum of
the lengths of the bu�ers up as far as max_buffers() at a time, and then the data shall be written
into the newly appended extent.

At least one byte of the �rst of the non-zero sized input bu�ers will be written. Each bu�er is wholly
written before the next bu�er is written. If a bu�er is not completely written, its size in the returned
bu�ers will be set to the bytes written out of that bu�er (which includes zero bytes written). As the
invididual bu�ers returned are the individual bu�ers input (i.e. the array of buffer_type pointed
to by buffers_type), you must ensure that the individual bu�ers input you supply are safe to write
to.

If the deadline is default constructed, the function may block, possibly forever, until at least one
byte is written, or possibly until all requested bytes are written, or anywhere in between depending
on implementation.

61

If the deadline speci�es an absolute deadline, and the system clock passes that deadline, any pending
i/o will be cancelled and a failure comparing equal to errc::timed_out shall be returned.

If the deadline speci�es an elapsed period and the i/o has not completed after that period, any
pending i/o will be cancelled and a failure comparing equal to errc::timed_out shall be returned.

If the deadline speci�es a zeroed deadline, the implementation will write as many bu�ers as it can
without blocking, and return immediately.

[Note: Cancelling pending i/o may be a blocking operation of indeterminite length for
some implementations i.e. there is no guarantee that the function will return at a time
anywhere close to what you requested. � end note]

Other things to consider:

• Not all bu�ers supplied may be written during the call, and may require unlimited subsequent
calls to complete the original gather write request. In this situation, you should adjust the
bu�ers input based on the bu�ers returned, and perform the operation again, looping this
procedure until all original input bu�ers are written. See above for an illustrative example.

• It is implementation de�ned whether concurrent reads of one or more bu�ers may see partial
completion of any concurrent writes to the same o�set and extent. In particular, a concurrent
write may not update in a linear lower to upper o�set fashion � it may appear to update a
later o�set �rst, then an earlier one, then a middle one, in any arbitrary (i.e. unpredictable)
order.

• It is implementation de�ned if a write exceeds any current maximum extent of the storage
referenced by the handle. It may clamp bu�ers returned to that maximum extent (i.e. by
partially writing the overlapping bu�er, and marking all remaining bu�ers as being unwritten),
or appear to succeed but in fact the data written past the maximum extent is lost, or clamp to
a di�erent maximum extent, or any other behaviour. If you wish to guarantee that writes past
the maximum extent are safe, open the handle with mode::append, or use set_append_only()
on the handle before the write.

• It is implementation de�ned whether the order of writes issued by the C++ program to a
cached writes con�gured handle are retained in an order on any underlying storage device i.e.
if sudden power loss occurs after a sequence of writes to a handle with cached writes, it is
permitted for an implementation to have completely reordered, or partially torn, any of those
writes. For handles where write caching was disabled, you are guaranteed that the order of
writes is preserved to the storage device, but the metadata to retrieve them may not be. For
handles where write and metadata caching was disabled, you are guaranteed that writes form
a sequentially consistent ordering fully retrievable in the order they were issued before any
unexpected interruption.

• It is implementation de�ned whether any system current �le pointer for the open handle is
a�ected by this operation.

Throws: There are multiple causes of failure: (i) any failure returned by the kernel (that the handle
is invalid, that the handle is not open for writing, that insu�cient system resources are available
to perform the write, that the operation was cancelled by another thread etc) (ii) if a non-in�nite

62

deadline is supplied and this handle does not support deadline i/o, may fail with an error comparing
equal to errc::function_not_supported (iii) if a non-in�nite deadline is supplied and that deadline
expired, an error comparing equal to errc::timed_out will be thrown.

Complexity: Depending on implementation, this may be a latency preserving function in the warm
cache use case, where the curve of the sorted latency distribution will closely match that of the curve
of copying memory at the same o�sets over the same extent of storage. However it may also be a
latency degrading function which allocates memory, or performs network access of indeterminate
duration. At this abstract level in the type hierarchy, you cannot know which. You should use a
re�nement of this type directly if you want stronger guarantees.

size_type write(extent_type offset, initializer_list<const_buffer_type> lst,

deadline d = deadline()) throws(file_io_error);

E�ects: Convenience overload for the preceding write() function, this instantiates a stack allocated
io_request<const_buffers_type> out of the initialiser list supplied, calls the preceding write()

function, sums the total bytes �lled into the bu�ers returned, and returns that value.

Throws: All the ways in which the preceding write() function can fail; also errc::no_buffer_space
if the size of the input initialiser list exceeds an implementation de�ned limit (prevents stack over-
�ow).

virtual const_buffers_type barrier(io_request<const_buffers_type> reqs = {},

bool wait_for_device = false,

bool and_metadata = false,

deadline d = deadline()) throws(file_io_error)

[[no_visible_side_effects]] = 0;

E�ects: For each bu�er supplied, do not reorder writes of bytes within those regions across this
write barrier. For an empty bu�er list, the whole �le is assumed.

If wait_for_device is true, block the calling thread until all writes to the regions speci�ed have
reached the device before returning. This may take some time, but may be relatively fast for some
implementations as one need not necessarily wait for acknowledgement that the writes have been
persisted, just that they have been received by the device.

If and_metadata is true, also block the calling thread until the metadata necessary for retrieving,
after sudden power loss, the writes preceding the write barrier to the regions speci�ed have also
reached the device before returning. This almost invariably causes a signi�cant blocking wait as one
must await acknowledgement that writes, plus metadata, plus any allocations to store them, have
been completely persisted.

A non-default deadline permits the call to return with a failure comparing equal to errc::timed_out
if the writes to the regions speci�ed have not reached the device by the time of the deadline.

[Note: In POSIX terms, wait_for_device corresponds in terms of semantics to fdatasync(),
and when combined with and_metadata, to fsync(), though note that implementations
may not actually use these POSIX functions where proprietary functions o�er more

63

control. � end note]

Implementations are completely free to implement this function as a null operation i.e. to do nothing,
yet to report success.

[Note: This is required by POSIX, but is also common practice in virtual machine
hosts to prevent a single virtual machine causing a denial of service attack to the other
virtual machines. End users should very strongly consider opening the handle with
caching::reads instead, this causes all writes to such a handle to have a sequentially
consistent order, and unlike write barriers, if you obtain an open handle with that
caching, you are guaranteed that it is working. Note that �ling systems use alterna-
tive algorithms for �les opened with caching::reads which often yield far superior
performance than using this function. � end note]

Implementations may also choose to always �ush metadata when blocking on preceding writes i.e.
and_metadata is assumed to be always true.

Implementations may ignore the regions supplied for barrier, and may always barrier the whole �le
instead. In this situation, the bu�ers returned would be empty to indicate the actual operation
carried out.

Implementations may implement non-blocking barriers as blocking barriers (i.e. wait_for_device
is always true) if the platform does not support non-blocking write barriers18.

[Alternative to the above yet to be discussed: Where an implementation knows for a
fact that it cannot implement a requested function because of lacking support on the
host platform e.g. to barrier writes without blocking until they reach the device, a
failure comparing equal to errc::function_not_supported should be returned. � end
alternative]

Implementations may be racy with respect to concurrent barriers on overlapping regions by di�erent
threads or processes. In this situation, there may be no sequentially consistent ordering, rather an
interleaving of regions updated.

Throws: (i) Any failure returned by the kernel (ii) if a non-in�nite deadline is supplied and this han-
dle does not support deadline i/o, may fail with an error comparing equal to errc::function_not_supported
(iii) if a non-in�nite deadline is supplied and that deadline expired, an error comparing equal to
errc::timed_out will be thrown.

Complexity: Depending on implementation, this may be a latency preserving function with a �xed
cost of execution. It may also be a latency degrading function of indeterminate execution time.

virtual extent_guard lock(extent_type offset,

extent_type bytes,

bool exclusive = true,

deadline d = deadline()) throws(file_io_error)

18Note to implementers: On impoverished POSIX implementations without better proprietary system calls, a non-
blocking barrier can be implemented by launching a fsync() task in a separate worker thread, and blocking any
further writes on that handle until the worker thread task completes.

64

[[no_visible_side_effects]];

E�ects: Tries to place an advisory lock on the range of bytes between offset and bytes for shared
or exclusive access, returning an object of type extent_guard whose destruction releases the lock
via calling unlock() upon the same region. If bytes is zero, the whole �le is locked19 i.e. zero up
to the maximum possible extent inclusive. Locked regions and allocated extents have nothing to do
with one another, so one can lock regions not within any maximum extent.

The e�ects of this call are permitted to vary widely between implementations. Some known varia-
tions:

• All advisory locks may be silently released if any handle to the same inode is closed in the
process. If the implementation detects this to be the case for a given handle instance, it will
set flags::byte_lock_insanity so code can detect such unhelpful semantics.

[Note: This is the infamous `byte lock insanity' mandated by POSIX. The sooner
POSIX �xes such daft semantics, the better. � end note]

• Advisory locks on an inode may silently replace existing locks which overlap any of the same
region, including those issued by other threads in the same process to other handles to the
same inode.

[Note: This unfortunate semantic is also required by POSIX. � end note]

• Some of the top bits of offset may be ignored in some implementations, thus making it
impossible to take locks on later extents in a �le.

• Some of the top bits of bytes may be ignored in some implementations, thus limiting the size
of the region locked.

[Note: The above two are caused by POSIX requiring o�set and length to be signed
values, and possibility of 31 bit quantities even when �les have 64 bit maximum
extents. Given that the top bit is always ignored on POSIX, it is suggested that
non-POSIX implementations may choose to emulate advisory locks on systems with
only mandatory locks by silently forcing the top bit to set. � end note]

• The e�ects of placing an exclusive lock on top of a shared lock (lock upgrade) is implementation
de�ned. It may be atomic or not. It may replace the shared lock, or not. It may silently not
work as well.

• The e�ects of downgrading an exclusive lock to a shared lock of the same region is imple-
mentation de�ned. It may atomic, or not. It may release the exclusive lock, or not. It may
silently not work as well.

[Note: Portable code should never perform lock upgrades or downgrades. Com-
pletely release the region, and take a fresh lock with the setting you want. Make
sure to reexamine the region for changes by other code. � end note]

19Some implementations use a completely di�erent mechanism in this situation, though you are guaranteed that
whole �le and byte region locks see one another.

65

• Whether it is possible to unlock part of a region previously locked is implementation de�ned
(some implementations may insist that what is unlocked is precisely what was previously
locked i.e. they `stack' region locks).

• Whether it is possible to unlock overlapping regions in a di�erent order to the order of their
locking is implementation de�ned.

[Note: Portable code should always unlock exact regions locked, never taking locks
on overlapping regions on the same inode, even if multiple handles are in use any-
where in the process including in third party code. � end note]

Throws: (i) Any failure returned by the kernel (ii) if a non-zero and non-in�nite deadline is supplied
and this handle does not support timed deadline i/o, may fail with an error comparing equal to
errc::function_not_supported (iii) if a non-in�nite deadline is supplied and that deadline expired,
an error comparing equal to errc::timed_out will be thrown.

Complexity: Depending on implementation, this may be a latency preserving function with a �xed
cost of execution. It may also be a latency degrading function of indeterminate execution time.

extent_guard try_lock(extent_type offset,

extent_type bytes,

bool exclusive = true) throws(file_io_error)

[[no_visible_side_effects]];

E�ects: Identical in e�ects to writing:

1 lock(offset, bytes, exclusive, chrono::seconds(0));

6.15 Header <io/map_handle> [ll�o.io.map_handle]

Todo

6.16 Header <io/mapped_file_handle> [ll�o.io.mapped_�le_handle]

Todo

6.17 Header <io/mapped> [ll�o.io.mapped]

6.17.1 Synopsis [ll�o.io.mapped.synopsis]

1 namespace std { namespace experimental { namespace io { inline namespace v1 {
2

3 template <class T> class mapped : public map_view<T>
4 {
5 public:
6 //! The extent type.
7 using extent_type = typename section_handle::extent_type;

66

8 //! The size type.
9 using size_type = typename section_handle::size_type;
10

11 public:
12 //! Default constructor
13 constexpr mapped() noexcept;
14

15 //! Returns a reference to the internal section handle
16 const section_handle §ion() const noexcept;
17 //! Returns a reference to the internal map handle
18 const map_handle &map() const noexcept;
19

20 //! Create a view of newly allocated unused memory, creating new memory if insufficient unused
memory is available.

21 explicit mapped(size_type length, bool zeroed = false, section_handle::flag _flag = section_handle::
flag::readwrite) throws(file_io_error);

22

23 //! Construct a mapped view of the given section handle.
24 explicit mapped(section_handle &sh, size_type length = (size_type) -1, extent_type byteoffset = 0,

section_handle::flag _flag = section_handle::flag::readwrite) throws(file_io_error);
25

26 //! Construct a mapped view of the given file.
27 explicit mapped(file_handle &backing, size_type length = (size_type) -1, extent_type maximum_size =

0, extent_type byteoffset = 0, section_handle::flag _flag = section_handle::flag::readwrite)
throws(file_io_error);

28 };
29

30 } } } }

6.17.2 Class mapped [ll�o.io.mapped.mapped]

A convenience wrapper of map_handle and map_view<T> with owning semantics.

Remarks: The type mapped must meet the MoveRelocating concept.

6.17.2.1 Class mapped constructors [ll�o.io.mapped.mapped.constructors]

constexpr mapped() noexcept;

E�ects: Constructs an invalid mapped.

explicit mapped(size_type length,

bool zeroed = false,

section_handle::flag _flag = section_handle::flag::readwrite)

throws(file_io_error);

E�ects: Creates an owning, reachable view of new memory via constructing an unbacked internal
map_handle with the given parameters.

Ensures: bless<T>(data(), size())

67

Throws: Any failures of the construction of the internal map_handle.

explicit mapped(section_handle &sh,

size_type length = (size_type) -1,

extent_type byteoffset = 0,

section_handle::flag _flag = section_handle::flag::readwrite)

throws(file_io_error);

E�ects: Creates an owning, reachable view of the memory represented by the section handle via
constructing an internal map_handle of length length with a byte o�set into the section handle's
memory of byteoffset. If length is all bits one, use the current length of the section handle
divided by the size of T.

Ensures: bless<T>(data(), size())

Throws: Any failures of the construction of the internal map_handle.

explicit mapped(file_handle &backing,

size_type length = (size_type) -1,

extent_type maximum_size = 0,

extent_type byteoffset = 0,

section_handle::flag _flag = section_handle::flag::readwrite)

throws(file_io_error);

E�ects: Creates an owning, reachable view of the storage represented by the �le handle via construct-
ing an internal section_handle to the �le of length maximum_size, and an internal map_handle of
length length with a byte o�set into the section handle's memory of byteoffset. If maximum_size
is zero, use the current maximum extent of the �le for creating the section handle. If length is all
bits one, use the current length of the section handle divided by the size of T.

Ensures: bless<T>(data(), size())

Throws: Any failures of the construction of the internal section_handle and map_handle.

6.17.2.2 Class mapped destructors [ll�o.io.mapped.mapped.destructors]

~mapped();

E�ects: Unmaps any region mapped by a constructor.

Ensures: unbless<T>(data(), size())

6.18 Header <io/map_view> [ll�o.io.map_view]

6.18.1 Synopsis [ll�o.io.map_view.synopsis]

68

1 namespace std { namespace experimental { namespace io { inline namespace v1 {
2

3 template <class T> class map_view : public span<T>
4 {
5 public:
6 //! The extent type.
7 using extent_type = typename section_handle::extent_type;
8 //! The size type.
9 using size_type = typename section_handle::size_type;
10

11 public:
12 //! Default constructor
13 constexpr map_view() noexcept;
14

15 //! Implicitly construct a mapped view of the given mapped data.
16 map_view(mapped<T> &map, size_type length = (size_type) -1, size_type offset = 0) noexcept;
17

18 //! Construct a mapped view of the given map handle.
19 explicit map_view(map_handle &mh, size_type length = (size_type) -1, extent_type byteoffset = 0)

noexcept;
20

21 //! Construct a mapped view of the given mapped file handle.
22 explicit map_view(mapped_file_handle &mfh, size_type length = (size_type) -1, extent_type byteoffset

= 0) noexcept;
23 };
24 } } } }

6.18.2 Class map_view [ll�o.io.map_view.map_view]

A non-owning reference to a region of mapped data, re�ning span<T>.

Remarks: The type map_view must meet the TriviallyCopyable concept.

6.18.2.1 Class map_view constructors [ll�o.io.map_view.map_view.constructors]

constexpr map_view() noexcept;

E�ects: Constructs an invalid map_view.

map_view(mapped<T> &map,

size_type length = (size_type) -1,

size_type offset = 0) noexcept;

E�ects: Implicitly constructs a non-owning, reachable view of a mapped range of contiguous T from
the speci�ed item o�set and of the speci�ed number of items. If length is all bits one, the number
of items used is that of the source map minus the item o�set.

Ensures: bless<T>(data(), size())

69

explicit map_view(map_handle &mh,

size_type length = (size_type) -1,

extent_type byteoffset = 0) noexcept;

E�ects: Constructs a non-owning, reachable view of memory mapped from the speci�ed map handle
from the speci�ed byte o�set and of the speci�ed number of items. If length is all bits one, the
number of items used is the length of the map handle minus the byte o�set divided by the size of T.

Ensures: bless<T>(data(), size())

explicit map_view(mapped_file_handle &mfh,

size_type length = (size_type) -1,

extent_type byteoffset = 0) noexcept;

E�ects: Constructs a non-owning, reachable view of memory mapped from the speci�ed mapped
�le handle from the speci�ed byte o�set and of the speci�ed number of items. If length is all bits
one, the number of items used is the maximum extent of the mapped �le handle minus the byte
o�set divided by the size of T.

Ensures: bless<T>(data(), size())

6.19 Header <io/native_handle> [ll�o.io.native_handle]

6.19.1 Synopsis [ll�o.io.native_handle.synopsis]

native_handle_type is already in the C++ 17 library as an implementation de�ned type, and
appears in the Networking TS amongst other places.

The below does not propose replacing that implementation de�ned type, but it does suggest that a
disposition be added to any implementation de�ned type if one is not already present. The dispo-
sition speci�es metadata about the native handle, which greatly eases a number of interoperation
issues such as trying to supply a process native handle type to a thread function, and so on.

1 namespace std { namespace experimental { namespace io { inline namespace v1 {
2

3 struct native_handle_type
4 {
5 //! The type of handle.
6 bitfield disposition
7 {
8 invalid = 0U, //!< Invalid handle
9

10 readable = 1U << 0U, //!< Is readable
11 writable = 1U << 1U, //!< Is writable
12 append_only = 1U << 2U, //!< Is append only
13

14 overlapped = 1U << 4U, //!< Requires additional synchronisation
15 seekable = 1U << 5U, //!< Is seekable
16 aligned_io = 1U << 6U, //!< Requires sector aligned i/o (typically 512 or 4096)

70

17

18 file = 1U << 8U, //!< Is a regular file
19 directory = 1U << 9U, //!< Is a directory
20 symlink = 1U << 10U, //!< Is a symlink
21 multiplexer = 1U << 11U, //!< Is a kqueue/epoll/iocp
22 process = 1U << 12U, //!< Is a child process
23 section = 1U << 13U //!< Is a memory section
24 }
25 disposition behaviour; //! The behaviour of the handle
26 union {
27 intptr_t _init{-1};
28 //! A POSIX file descriptor
29 int fd; // NOLINT
30 //! A POSIX process identifier
31 int pid; // NOLINT
32 //! A Windows HANDLE
33 win::handle h; // NOLINT
34 };
35 //! Constructs a default instance
36 constexpr native_handle_type();
37 ~native_handle_type() = default;
38 //! Construct from a POSIX file descriptor
39 constexpr native_handle_type(disposition _behaviour, int _fd) noexcept;
40 //! Construct from a Windows HANDLE
41 constexpr native_handle_type(disposition _behaviour, win::handle _h) noexcept;
42

43 //! Copy construct
44 native_handle_type(const native_handle_type &) = default;
45 //! Move construct
46 constexpr native_handle_type(native_handle_type &&o) noexcept;
47 //! Copy assign
48 native_handle_type &operator=(const native_handle_type &) = default;
49 //! Move assign
50 constexpr native_handle_type &operator=(native_handle_type &&o) noexcept;
51 //! Swaps with another instance
52 void swap(native_handle_type &o) noexcept;
53

54 //! True if valid
55 explicit constexpr operator bool() const noexcept;
56 //! True if invalid
57 constexpr bool operator!() const noexcept;
58

59 //! True if the handle is valid
60 constexpr bool is_valid() const noexcept;
61

62 //! True if the handle is readable
63 constexpr bool is_readable() const noexcept;
64 //! True if the handle is writable
65 constexpr bool is_writable() const noexcept;
66 //! True if the handle is append only
67 constexpr bool is_append_only() const noexcept;
68

69 //! True if overlapped
70 constexpr bool is_overlapped() const noexcept;
71 //! True if seekable
72 constexpr bool is_seekable() const noexcept;

71

73 //! True if requires aligned i/o
74 constexpr bool requires_aligned_io() const noexcept;
75

76 //! True if a regular file or device
77 constexpr bool is_regular() const noexcept;
78 //! True if a directory
79 constexpr bool is_directory() const noexcept;
80 //! True if a symlink
81 constexpr bool is_symlink() const noexcept;
82 //! True if a multiplexer like BSD kqueues, Linux epoll or Windows IOCP
83 constexpr bool is_multiplexer() const noexcept;
84 //! True if a process
85 constexpr bool is_process() const noexcept;
86 //! True if a memory section
87 constexpr bool is_section() const noexcept;
88 };
89

90 } } } }

6.19.2 Class native_handle_type [ll�o.io.native_handle.native_handle_type]

As native_handle_type is merely here for exposition and to remind readers of the same implemen-
tation de�ned type already in the C++ standard, it will not be explained further.

Remarks: The type native_handle_typemust be constexpr constructible, and meet the TriviallyCopyable
and StandardLayout concepts.

6.20 Header <io/status_code> [ll�o.io.status_code]

6.20.1 Synopsis [ll�o.io.status_code.synopsis]

Note that status_code<> is from [P1028] SG14 status_code and standard error object for P0709
Zero overhead deterministic exceptions.

1 namespace std { namespace experimental { namespace io { inline namespace v1 {
2

3 using file_io_error = errored_status_code<file_io_status_code_domain>;
4 // as-if:
5 {
6 public:
7 using errored_status_code<file_io_status_code_domain>::errored_status_code;
8

9 //! Returns any first path associated with the errored status
10 filesystem::path path1() const;
11

12 //! Returns any second path associated with the errored status
13 filesystem::path path2() const;
14 };
15

16 } } } }

72

6.20.2 Class file_io_error [ll�o.io.status_code.�le_io_error]

A status code capable of transporting a system code with information on how to fetch on demand
up to two �lesystem paths.

Remarks: The type file_io_errormust be constexpr constructible, and meet the TriviallyCopyable
and StandardLayout concepts. It is not permitted to allocate nor free memory during construction
and destruction.

6.20.2.1 Class file_io_error constructors [
ll�o.io.status_code.�le_io_error.constructors] Todo

6.21 Header <io/path_discovery> [ll�o.io.path_discovery]

Todo

6.22 Header <io/path_handle> [ll�o.io.path_handle]

Todo

6.23 Header <io/random_file_handle> [ll�o.io.random_�le_handle]

Todo

6.24 Header <io/section_handle> [ll�o.io.section_handle]

Todo

6.25 Header <io/stat> [ll�o.io.stat]

Todo

6.26 Header <io/statfs> [ll�o.io.statfs]

Todo

6.27 Header <io/symlink_handle> [ll�o.io.symlink_handle]

Todo

73

7 Frequently asked questions

7.1 Why bother with a low level �le i/o library when calling the kernel syscalls
directly is perfectly �ne?

1. This low level �le i/o library de�nes a common language of basic operations across platforms.
In other words, it chooses a common denominator across 99% of platforms out there. For
example, if you append to a memory mapped �le, that'll do the platform-speci�c magic on all
supported platforms.

2. This low level �le i/o library only consumes and produces trivially copyable, move relocatable
and standard layout objects. Empirical testing has found that the optimiser will eliminate
this low level library almost always, inlining the platform speci�c syscall directly. So, it is no
worse in any way over calling the platform syscalls directly, except that this library API is
portable.

3. Where trivial to do so, we encode domain speci�c knowledge about platform speci�c quirks.
For example, fsync() on MacOS does not do a blocking write barrier, so our barrier()

function calls the appropriate magic fcntl() on MacOS only where the barrier() is requested
to block until completion.

4. This low level �le i/o library is a bunch of primitives which can be readily combined together
to build �lesystem algorithms whose implementation code is much cleaner looking and easier
to rationalise about than using syscalls directly.

5. We can provide deep integration with C++ language features in a way which platform speci�c
syscalls cannot. Ranges, Coroutines and Generators are the obvious examples, but we also
make a ton of use of span<T>, so all code which understands span<T> � or more likely the
std::begin() and std::end() overloads it provides � automagically works with no extra
boilerplate needed.

7.2 The �lesystem has a reputation for being riddled with unpredictable se-
mantics and behaviours. How can it be possible to usefully standardise
anything in such a world?

That is a very good question. This proposal passes through, for the most part, whatever the platform
syscalls do. If, for example, POSIX read() and write() implement the POSIX �le i/o atomicity
guarantees for �le i/o as they are supposed to do, then:

1. A write syscall's e�ects will either be wholly visible to concurrent reads, or not at all (i.e. no
`torn writes').

2. Reads of a �le o�set acquire that o�set, writes to a �le o�set release that o�set. Acquire and
release have the same meaning as for atomic acquire and release, so they enforce a sequential
ordering of visibility to concurrent users based on overlapping regions20.

20Many, if not most, �ling systems actually implement a RWmutex per inode so their guarantees are rather stronger
than POSIX requirements. One should not rely on this in portable code however!

74

These are very useful guarantees for implementing lock free �lesystem algorithms, and are a major
reason to use POSIX read() and write() (i.e. our proposed file_handle) instead memory maps
(i.e. our proposed map_handle) because one can forego using any additional locking in the former.
Major platform support for the POSIX read/write atomicity guarantees is pretty good in recent
years21:

FreeBSD ZFS Linux ext4 Win10 NTFS

Bu�ered i/o Scatter-gather No Per bu�er
Unbu�ered i/o Scatter-gather Scatter-gather Scatter-gather

Such domain speci�c knowledge requirements as this may seem to strongly recommend against
standardisation into C++. However, I would counter with the point that lock free programming
requires extensive domain speci�c knowledge. As does SIMD programming. And as does the
standard library's generic algorithms and containers themselves.

We in C++ have historically not shied away from requiring signi�cant domain speci�c knowledge
to fully realise the potential of the low level parts of the ecosystem. I don't think we should exclude
low level �le i/o just because parts of it vary in semantics between operating systems. After all,
even simple RAM varies in semantics between systems, yet we still manage to write C++ programs
which are reasonably performant and portable across a wide range of systems, by avoiding doing
things which are not portable. Same applies to the �lesystem, in my opinion.

7.3 Why do you consider race free �lesystem so important as to impact per-
formance for all code by default, when nobody else is making such claims?

Firstly, performance is only impacted if the host platform does not support direct syscall imple-
mentations for all the race free operations exposed by the proposed low level �le i/o library, and
the missing functionality must be emulated from user space. At least one major platform provides
a full set (Microsoft Windows), and I have an enhancement ticket open for Linux22 to implement
the missing support. If WG21 forms the proposed Memory study group, you can be assured that I
will try to bang the drum with the OS vendors to add the missing support to their syscalls, indeed
I may just go submit a kernel patch to Linux myself (or persuade a Study Group member to do it).

I strongly take the opinion that correctness must precede performance, and as the �lesystem is
free to be concurrently permuted at any time by third parties, a correct implementation requires
program code to be as impervious as possible to �lesystem race conditions.

I appreciate that many do not share this opinion. A great many ran ext3 as their Linux �ling system
when it was demonstrably incorrect in a number of important behaviours23. Such users preferred
maximum performance to losing data occasionally, and I don't mind any individual choosing that
for their individual needs.

But international engineering standards must be more conservative. Choices made here a�ect
everybody, including users where data loss must be avoided at all costs. Defaulting to race free

21Scatter-gather atomicity means that the entire of a scatter-gather bu�er sequence is treated as an atomic unit.
Per bu�er atomicity means that atomicity is per scatter-gather bu�er only.

22https://bugzilla.kernel.org/show_bug.cgi?id=93441
23Feel fear after reading http://danluu.com/file-consistency/.

75

https://bugzilla.kernel.org/show_bug.cgi?id=93441
http://danluu.com/file-consistency/

�lesystem is the safest choice. Without defaulting to race free �lesystem, code written using this
low level �le i/o library would be much less secure, more prone to surprising behaviour, and end
users of C++ code exposed to a higher risk of loss of their data.

8 Acknowledgements

Thanks to Nicol Bolas, Bengt Gusta�son, Chris Je�erson and Marshall Clow for their feedback.

9 References

[P0443] Jared Hoberock, Michael Garland, Chris Kohlho�, Chris Mysen, Carter Edwards, Gordon
Brown,
A Uni�ed Executors Proposal for C++
http://wg21.link/P0443

[P0593] Richard Smith,
Implicit creation of objects for low-level object manipulation
https://wg21.link/P0593

[P0709] Herb Sutter,
Zero-overhead deterministic exceptions
https://wg21.link/P0709

[P0829] Ben Craig,
Freestanding proposal
https://wg21.link/P0829

[P0939] B. Dawes, H. Hinnant, B. Stroustrup, D. Vandevoorde, M. Wong,
Direction for ISO C++
http://wg21.link/P0939

[P1026] Douglas, Niall
A call for a Data Persistence (iostream v2) study group
https://wg21.link/P1026

[P1028] Douglas, Niall
SG14 status_code and standard error object for P0709 Zero-overhead deterministic exceptions
https://wg21.link/P1028

[P1029] Douglas, Niall
SG14 [[move_relocates]]
https://wg21.link/P1029

[P1030] Douglas, Niall
Filesystem path views
https://wg21.link/P1030

76

http://wg21.link/P0443
https://wg21.link/P0593
https://wg21.link/P0709
https://wg21.link/P0829
http://wg21.link/P0939
https://wg21.link/P1026
https://wg21.link/P1028
https://wg21.link/P1029
https://wg21.link/P1030

[P1095] Douglas, Niall
Zero overhead deterministic failure � A uni�ed mechanism for C and C++
https://wg21.link/P1095

[1] Boost.Outcome
Douglas, Niall and others
https://ned14.github.io/outcome/

[2] Deukyeon Hwang and Wook-Hee Kim, UNIST; Youjip Won, Hanyang University; Beomseok
Nam, UNIST
Endurable Transient Inconsistency in Byte-Addressable Persistent B+-Tree
Proceedings of the 16th USENIX Conference on File and Storage Technologies (2018)
https://www.usenix.org/system/files/conference/fast18/fast18-hwang.pdf

77

https://wg21.link/P1095
https://ned14.github.io/outcome/
https://www.usenix.org/system/files/conference/fast18/fast18-hwang.pdf

	Introduction
	Latency to storage has become more important than it was
	The immature standard library support for file i/o leads to a lot of inefficient and buggy code and/or reinvention of the wheel
	The C++ memory and object model needs reform

	Examples of use
	Read an entire file into a vector assuming a single valid extent:
	Write multiple gather buffers to a file:
	Map a file into memory and search it for a string (1):
	Map a file into memory and search it for a string (2):
	Kernel memory allocation and control (1):
	Kernel memory allocation and control (1):
	Sparsely stored arrays:
	Resumable i/o with Coroutines:
	Read all valid extents of a file using asynchronous file i/o:

	Impact on the Standard
	Changes to the C++ memory model to support mapped and virtual memory
	New attributes [[no_side_effects]] and [[no_visible_side_effects]], and new contract syntax for specifying lack of side effects
	I/O write reordering barriers

	Non-adopted WG21 proposal dependencies

	Proposed Design
	Handles to kernel resources
	Class hierarchy inheriting from handle
	Miscellaneous and utility classes and functions

	Generic filesystem algorithms and template classes
	Introduction
	Filesystem template library (so far) – the `FTL'
	Planned generic filesystem template algorithms yet to be reference implemented

	Filesystem functionality deliberately omitted from this proposal

	Design decisions, guidelines and rationale
	Race free filesystem
	No (direct) support for kernel threads
	Asynchronous file i/o is much less important than synchronous file i/o
	Pass through the raciness at the low level, abstract it away at the high level

	Draft Technical Specification
	Scope
	Conformance
	POSIX conformance
	Operating system dependent behavior conformance

	References
	Terms and definitions
	Cold cache
	File extents
	Filesystem entity
	File serial number
	Kernel page cache
	Mapped files
	Memory page
	Page fault
	Storage device
	File unique id
	Virtual memory
	Warm cache

	General principles
	Thinly wrap system calls
	Zero memory copies
	Idealised random access storage
	Genericity in i/o
	Race free filesystem

	Header <io/algorithm/cached_parent_handle_adapter>
	Header <io/algorithm/shared_fs_mutex>
	Header <io/deadline>
	Synopsis
	Class deadline

	Header <io/directory_handle>
	Header <io/embedded_file_handle>
	Header <io/embedded_file_source>
	Header <io/file_handle>
	Header <io/handle>
	Synopsis
	Class handle

	Header <io/io_handle>
	Synopsis
	Class io_handle

	Header <io/map_handle>
	Header <io/mapped_file_handle>
	Header <io/mapped>
	Synopsis
	Class mapped

	Header <io/map_view>
	Synopsis
	Class map_view

	Header <io/native_handle>
	Synopsis
	Class native_handle_type

	Header <io/status_code>
	Synopsis
	Class file_io_error

	Header <io/path_discovery>
	Header <io/path_handle>
	Header <io/random_file_handle>
	Header <io/section_handle>
	Header <io/stat>
	Header <io/statfs>
	Header <io/symlink_handle>

	Frequently asked questions
	Why bother with a low level file i/o library when calling the kernel syscalls directly is perfectly fine?
	The filesystem has a reputation for being riddled with unpredictable semantics and behaviours. How can it be possible to usefully standardise anything in such a world?
	Why do you consider race free filesystem so important as to impact performance for all code by default, when nobody else is making such claims?

	Acknowledgements
	References

