

Document number: P1022R0 (Informational)
Date: 20180420 (p)
Project: Programming Language C++, WG21, SG1, SG14, LEWG, LWG
Authors: Michael Wong, Maged M. Michael, Paul McKenney, Geoffrey Romer, Andrew Hunter,
Arthur O'Dwyer, David S. Hollman, JF Bastien, Hans Boehm, David Goldblatt
Email: michael@codeplay.com, maged.michael@acm.org, paulmck@linux.vnet.ibm.com,
gromer@google.com, ahh@google.com, arthur.j.odwyer@gmail.com, dshollm@sandia.gov,
jfbastien@apple.com, hboehm@google.com, davidtgoldblatt@gmail.com
Reply to: michael@codeplay.com

Material for 2018 JAX Discussions of
Hazard Pointer and Read-Copy-Update
(RCU)

Discussion in JAX: Hazard Pointer Patterns 2

Discussion in JAX: RCU memory-ordering diagrams 4

Notes from discussion in JAX 6

This informational document records some material for discussions of
Hazard Pointers and RCU at the 2018 Jacksonville C++ meeting. It also
includes notes from the ensuing discussion. These materials were initially
kept at the end of D0566R5, but needed to be removed from that document
for the next mailing. This document therefore preserves these materials for
posterity.

mailto:michael@codeplay.com
mailto:maged.michael@acm.org
mailto:paulmck@linux.vnet.ibm.com
mailto:gromer@google.com
mailto:ahh@google.com
mailto:arthur.j.odwyer@gmail.com
mailto:dshollm@sandia.gov
mailto:jfbastien@apple.com
mailto:hboehm@google.com
mailto:davidtgoldblatt@gmail.com

Discussion in JAX: Hazard Pointer Patterns
R Reader
W Remover (Writer)
D Reclaimer (Deleter)

ptr pointer to protected object
src points to reachable (not removed) object
P hazard pointer owned by Reader
h Reader's hazptr_holder that owns P

Library calls in bold
Library steps in italics

Note: Writer (Remover) removes ptr by storing a value != ptr to src.

Pattern 1: Object protected using hazptr_holder::try_protect()

R (Reader) Writer/Deleter (Remover/Reclaimer)

R1: h.try_protect(ptr, src)
// R1a: P.store(ptr, rlx)
// R1b: seq_cst fence
// R1c: src.load(rlx) == ptr

R2: <use *ptr> // app

R3: h.reset()
// R3: P.store(null,rel)

W1: src.store(null, rel); // app
/* App guarantees that src != ptr between
ptr->retire() and reclamation of *ptr */
W2: ptr->retire()
/* retire() hb reclamation attempt on the same
or another thread */

// D1a: <seq_cst fence>
// D1b: P.load(acq) == ptr
// D1c: <don't reclaim *ptr>

// D2a: <seq_cst fence>
// D2b: P.load(acq) != ptr
// D2c: <reclaim *ptr>

Pattern 2: Object protected using hazptr_holder::reset()

R (Reader) W/D (Remover/Reclaimer)

R1: h.reset(ptr)
// R1: P.store(ptr,rlx)
<hb W2> // app

R2: <use *ptr> // app

R3: h.reset()
// R3: P.store(null,rel)

W1: src.store(null,rel); // app
W2: ptr->retire()
/* retire() hb reclamation attempt on the same
or another thread */

// D1a: <seq_cst fence>
// D1b: P.load(acq) == ptr
// D1c: <don't reclaim *ptr>

// D2a: <seq_cst fence>
// D2b: P.load(acq) != ptr
// D2c: <reclaim *ptr>

Pattern 3: Cleanup

R (Reader) W (Remover) D (Reclaimer)

R1: h.reset(ptr)
// R1: P.store(ptr,rlx)
<hb W2> // app

R2: <use *ptr> // app

R3: h.reset()
// R3: P.store(null,rel)

W1: src.store(null,rel); // app
W2: ptr->retire()
<hb D1>

D1: hazptr_cleanup()
// D1a: <seq_cst fence>
// D1b: P.load(acq) != ptr
// D1c: <reclaim *ptr>

Discussion in JAX: RCU memory-ordering diagrams
RCU provides strong ordering guarantees between std::rcu_reader, std::rcu_retire, and
std::rcu_barrier. One set of guarantees applies to earlier instances of std::rcu_reader
and later instances of std::rcu_retire along with std::rcu_barrier, as shown below:

In other words, if an std::rcu_reader constructor happens before an std::rcu_retire, then
the RCU implementation guarantees that the std::rcu_reader destructor strongly happens
before the corresponding deleter. Separately, if an std::rcu_retire happens before the call
to an std::rcu_barrier, then the RCU implementation guarantees that the deleter strongly
happens before the return from that std::rcu_barrier. Because strongly happens before is
transitive, if the std::rcu_barrier is sequenced before some memory reference A, the
entirety of the code protected by the std::rcu_reader strongly happens before A.

In both cases, the precondition is happens before and the postcondition is strongly happens
before.

A similar guarantee applies to earlier instances of std::rcu_retire and later instances of
Std::rcu_reader, as shown on the following diagram:

In other words, if a deleter happens before an std::rcu_reader destructor, then the RCU
implementation guarantees that the std::rcu_retire strongly happens before the
std::rcu_reader constructor.

In both diagrams, the std::rcu_retire can be replaced by the std::retire member
function. Alternatively, and again in both diagrams, the std::rcu_retire may be replaced by
a call to rcu_synchronize and the deleter may be replaced with the corresponding return from
rcu_synchronize. In other words, these other two ways of inducing RCU grace periods have
memory-ordering semantics that are identical to those of std::rcu_retire.

Notes from discussion in JAX
Hazard pointers and RCU.

Olivier: Need:

o Wording device
o Actual wording

Hans Boehm: Usage rules.

Frank: Usage rules.

JF: Not trying to change design. Just trying to make sure that the wording will fit into the design
of Library.

Maged: try_protect, retire, cleanup.

Frank: Ordering? Maged: Ordering implied by the rules, for example, the "happens before" in
the last normative paragraph of the retire member function.

Hans: Want better wording for Hazard Pointer retire member function.

Andrew:

The implementations divides the lifetime of each hazard pointer into a series of epochs
separated by updates that change the hazard pointer's value. A non-nullptr hazard pointer
protects the corresponding object from being reclaimed, and that protection persists until the
end of that epoch. The implementation must guarantee that end of that epoch strongly happens
before evaluation of the retire expression.

Note: A failed try_protect may create a spurious epoch. end note.

Frank: Invalid pointers!

Laundring? Geoff: No need, no dereferencing.

Maged: Cleanup. Andrew: Try epoch wording.

User must arrange for all retires and epoch ends happen before the cleanup.

Frank: The retire registers the expression, and that regist... Frank to email the issue, which he
did:

The [hazptr.base] describes the retire() call. That call takes a parameter “reclaim” which
then is “registered for evaluation.” This basically means that the value is copied or
moved into some storage internal to the facility. The call expression is later invoked on
that instance. The effects of invoking the user provided copy/move constructor on the
type D need to become visible to the invocation of the call expression on that object.

Probably the implementation needs to try hard to fail this requirement, but the spec
should say it nonetheless, I think.

Michael Young: cleanup does minimum cleanup.

RCU

JF: Horror-show litmus test? Olivier: RCU Litmus tests paper.

Geoff: Put front matter after synopsis.

Hans: Move ~rcu_reader precondition to be a non-normative note.

Andrew: Remove ~rcu_reader effects.

Geoff: No, strike entire ~rcu_reader section.

Ben: Normative weak CAS text.

Andrew: To define synchronize_rcu in terms of rcu_retire. Hans has input.

Andrew: Make retire member function as-if rcu_retire.

Frank: Concerned about the lifetime of the "d" argument to rcu_retire. Must not throw. Geoff:
Overspecified, refer to unique_ptr. Which Frank did:

[unique.ptr.single]

1) The default type for the template parameter D is default_delete. A client-supplied
template argument D shall be a function object type (23.14), lvalue reference to function,
or lvalue reference to function object type for which, given a value d of type D and a
value ptr of type unique_ptr<T, D>::pointer, the expression d(ptr) is valid and has the
effect of disposing of the pointer as appropriate for that deleter.

[unique.ptr.single.ctor]

12) Requires: For the first constructor, if D is not a reference type, D shall satisfy the
requirements of CopyConstructible and such construction shall not exit via an exception.
For the second constructor, if D is not a reference type, D shall satisfy the requirements
of MoveConstructible and such construction shall not exit via an exception.

18) Requires: If D is not a reference type, D shall satisfy the requirements of
MoveConstructible (Table 23). Construction of the deleter from an rvalue of type D shall
not throw an exception

[unique.ptr.single.dtor]

1) Requires: The expression get_deleter()(get()) shall be well-formed, shall have
well-defined behavior, and shall not throw exceptions. [Note: The use of default_delete
requires T to be a complete type. — end note]

Olivier: Why many uses of strongly happens before? A: Need transitivity. Olivier: Synchronizes
with? Geoff: "Synchronizes with" is primitive edge. Olivier: First time we order on both sides of
a box (deleter) whose contents we do not control.

Nathan Myers: Allocators has lots of diagrams. Geoff: Wording reflect diagrams, so not needed,
but maybe OK as non-normative note.

General acclamation of diagrams.

