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1 Integrating Executors with Parallel Algorithms

Execution policies allow programmers to impose requirements on how parallel algorithms are allowed to execute. For example,
std::execution::par allows algorithms to execute in parallel, possibly on multiple implementation-created threads:

using namespace std::execution;

// execute a parallel reduction using implementation-defined resources
auto sum = std::reduce(par, data.begin(), data.end());

However, the parallel algorithms currently provide no mechanism for controlling where execution is allowed to occur. For
example, there is currently no mechanism for a programmer to communicate that a parallel algorithm should execute by
submitting work to an externally-provided thread pool.

P0443 proposes executors as a general mechanism for programmatic control over execution-creating library interfaces, and
others (N4406, P0761) have suggested a policy.on(executor) syntax for composing with parallel algorithms. With the
introduction of executors and .on(), our previous example becomes flexible:

using namespace std::execution;

// execute a parallel reduction using implementation-defined resources
auto sum = std::reduce(par, data.begin(), data.end());

// NEW: execute a parallel reduction on a user-created thread pool with 4 threads
static_thread_pool pool(4);
sum = std::reduce(par.on(pool.executor()), data.begin(), data.end());

// NEW: execute a parallel reduction on a user-defined executor
my_executor_type my_executor;
sum = std::reduce(par.on(my_executor), data.begin(), data.end());

This paper is a sketch of the likely additions necessary to incorporate P0443’s executor model into parallel algorithms.

1.1 Proposal summary

1. For each standard, named policy, introduce a .on(ex) member function to create a new execution policy with an
adaptation of ex bound as its associated executor.

2. For policy types resulting from .on(ex) expressions, introduce a .executor() member function to return the policy’s
associated executor.

3. For each standard policy, introduce a ::execution_requirement member variable to advertise an execution policy’s
bulk execution requirement.

4. Refactor existing wording to describe execution policy guarantees in terms of the guarantees provided by their
::execution_requirement.

5. Introduce a new execution mapping property value, execution::mapping.this_thread, to capture seq’s requirement
to execute on the calling thread.

These additions should merge with the Working Paper at the same time as executors. Depending on timing, an earlier shipping
vehicle may also be possible; for example, a new Parallelism Technical Specification.
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1.2 Why are both execution policies and executors required?

Some committee members have asked why both execution policies and executors are necessary for parallel algorithm execution.
The implication being that an executor alone should be sufficient for describing how a parallel algorithm should execute. In
fact, executors express just one dimension of algorithm execution. Both execution policies and executors are necessary.

Policies organize algorithm parameters. Many parameters may influence the performance of a parallel algorithm’s
implementation. The physical resource upon which the algorithm execute, represented by an executor, is just one of these.
Another example would be a memory allocator to use for temporary memory allocation during algorithm execution. Some of
these parameters may even be algorithm-specific tuning parameters which influence the performance of high performance
implementations. Because these parameters could be arbitrarily detailed or specific, and there may be many of them, it makes
sense to encapsulate them inside a single user-facing execution policy. Doing so keeps algorithm function signatures organized
and allows users to focus on only those parameters relevant to their use cases.

Some policies may have no executor. When execution policies were originally proposed, one potential use case was
to act as channels for exposing vendor-specific, high-performance algorithm implementations. One example given was a
high-performance sorting algorithm implemented by an FPGA. This would be an example of a fixed-function execution policy
compatible with only a single algorithm. Such an execution policy could have no executor because the underlying resource, a
fixed-function FPGA, would not be able to host general purpose execution agents. In order to accomodate such platforms, we
need to allow for execution policies without an associated executor.

Moreover, we suggest that standard policies such as execution::par should not have an associated executor. This is
to allow standard library implementors maximum freedom in their parallel algorithm implementations. For example, a
high-performance implementation might require an implementation that eschewed an executor. Of course, an executor may
always be introduced at an algorithm call site with an expression involving a standard policy (e.g., execution::par.on(ex)),
but the policy resulting from that expression would be different from the original policy and would have a different type.

1.3 Implementation Experience

The .on() syntax is inspired by a long-standing feature within Thrust which provides the means to specify that parallel
algorithm execution should occur “on” a particular CUDA stream. We have elaborated and generalized that syntax within
Agency to support the P0443 executor model. After years of deployment experience, we are convinced that this syntax
provides an clear and concise expression of the programmer’s intent to create a binding between an algorithm’s execution
ordering requirements (the policy) with a particular resource (the executor).

1.4 Proposed additions to execution policies

The most significant changes will be to “modularize” portions of [algorithms.parallel.exec] and [algorithms.parallel.exceptions].
They are currently “hard-coded” to describe only sequenced_policy, parallel_policy, and parallel_unsequenced_policy.
They should instead make general statements in terms of the associated executors of execution policies.

1.4.1 Definitions

1. The presence of a member function .executor() indicates that an execution policy has an associated executor, and the
value returned by that function is a copy of the associated executor.

[Editorial note: We should find a way to word this such that the associated executor exists iff .executor() exists. –end note]

2. During parallel algorithm execution, execution policies may invoke element access functions on the thread which invoked
the parallel algorithm, or on execution agents created by their associated executor, if an associated executor exists.
Otherwise, element access functions may be invoked on execution policy-defined threads.

3. Execution policies have a bulk execution requirement, described by the member variable execution_requirement, if
present. If absent, the execution policy’s bulk execution requirement is execution::bulk_guarantee.unsequenced.

4. The bulk execution guarantee of an execution policy’s associated executor satisfies the policy’s bulk execution requirement.

[Editorial note: The intention of these paragraphs is to allow refactoring [algorithms.parallel.exec] p4, p5, and p6 to state
them in terms of the execution policy’s execution_requirement. The idea would be to eliminate p4, p5, & p6 in favor of
something like these paragraphs. –end note]
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1.4.2 New execution policy members

We propose one new static member variable and two new member functions for each standard execution policy type.
::execution_requirement allows observation of an execution policy’s requirements on parallel algorithm execution.
.executor() allows observation of an execution policy type’s associated executor. .on() allows a client to “rebind” a policy’s
associated executor. Rather than mutating the existing policy, a new policy is returned as a result. The given executor must
be able to guarantee the original policy’s execution requirement via an execution::require expression. Otherwise, the call
to .on() will not compile.

1.4.2.1 Advertising the bulk execution requirement

For each standard execution policy type, introduce a static constexpr member ::execution_requirement:

Execution policy type Type of ::execution_requirement

sequenced_policy execution::bulk_guarantee_t::sequenced_t
parallel_policy execution::bulk_guarantee_t::parallel_t
parallel_unsequenced_policy execution::bulk_guarantee_t::unsequenced_t

1.4.2.2 Observing the associated executor

Introduce a member function sequenced_policy::executor():

see-below executor() const;

Returns: A copy ex of this execution policy’s associated executor. can_require_v<decltype(ex), execution::bulk_t,
decltype(execution_requirement), execution::mapping_t::this_thread_t> is true.

For each of the other standard execution policy types, introduce a member function .executor():

see-below executor() const;

Returns: A copy ex of this execution policy’s associated executor. can_require_v<decltype(ex), execution::bulk_t,
decltype(execution_requirement), execution::mapping_t::thread_t> is true.

1.4.2.3 Rebinding the associated executor

For each standard, named execution policy type, introduce a member function .on():

template<class OtherExecutor>
see-below on(const OtherExecutor& ex) const;

Returns: An execution policy object policy identical to *this with the exception that the returned execution policy’s
associated executor is a copy of ex. [Editorial note: This wording is probably not quite correct. Its use of “identical” is
inspired by P0443’s specification of require expressions. –end note] is_execution_policy<decltype(policy)>::value is
true.

Remarks: This function shall not participate in overload resolution unless execution::can_require_v<OtherExecutor,
execution::bulk, decltype(execution_requirement)> is true.

1.4.2.4 Introducing execution::mapping.this_thread

Supplement execution::mapping_t with an additional nested property type:

Nested Property Type Nested Property Object Name Requirements
mapping_t::this_thread_t mapping::this_thread Each execution agent

created by the executor
is mapped onto the
thread on which the
originating execution
function was invoked.
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1.4.3 Notes

1. This proposal associates an executor with execution policies returned by standard policies’ .on() functions. However, we
do not propose a general requirement for all execution policies to have an associated executor because future user-defined
execution policy types may not have an associated executor. For example, an execution policy targeting an ASIC
specialized for accelerated sorting need not have an associated executor capable of executing arbitrary user-defined
functions.

2. The return type of .executor() and .on() is not concretely specified in order to allow us to decide what those types
should be later, if the standards committee decides to do so.

3. .on() does not require e.g. can_require_v<Execution, twoway_t> to give parallel algorithm authors implementation
freedom to choose which bulk execution functions they use.

4. Rebinding an executor may have applications beyond execution policies, and it is possible that a general purpose
mechanism for executor rebinding will emerge. We envision .on() to be syntactic sugar for such a general purpose
mechanism, should one eventually exist.

5. The execution policy returned by e.g. execution::par.on(my_exec) is not guaranteed to have a .on() member
because we intend for .on() to be a syntactic convenience provided by the standard named policies. It is unclear that
.on() should be a requirement for all ExecutionPolicy types; for example, user-defined ExecutionPolicy types.

6. For convenience, .on() could be extended in the future to receive types which are not executors, but which do have an
associated executor; for example, thread pools.

7. Whether or not .on() eagerly adapts the given executor via a execution::require call is an implementation detail.

8. With the appropriate executor exception handling properties, [algorithms.parallel.exceptions] could be reformulated
in terms of general statements about the properties of the execution policy’s associated executor. See P0797 for possible
approaches to executor exception handling properties.

1.5 Possible Implementation

namespace execution {

template<class ExecutionRequirement, class Executor>
class __basic_execution_policy
{

public:
static_assert(execution::can_require_v<Executor, execution::bulk_t, ExecutionRequirement>::value);

static constexpr ExecutionRequirement execution_requirement{};

Executor executor() const
{

return executor_;
}

private:
template<class ER, class E>
friend __basic_execution_policy<ER, E> __make_basic_execution_policy(const E& ex)
{

return __basic_execution_policy<ER, E>{ex};
}

Executor executor_;
};

class parallel_policy
{

private:
__parallel_executor executor_;
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parallel_policy(const __parallel_executor& ex) : executor_(ex) {}

public:
static constexpr execution_requirement = execution::bulk_guarantee.parallel;

parallel_policy() = default;

template<class OtherExecutor,
class = enable_if_t<

execution::can_require_v<
execution::bulk_t, decltype(execution_requirement)

>>>
__basic_execution_policy<decltype(execution_requirement), OtherExecutor>

on(const OtherExecutor& ex) const
{

return __make_basic_execution_policy(ex);
}

};

} // end execution

template<class ExecutionRequirement, class Executor>
struct is_execution_policy<execution::__basic_execution_policy<ExecutionRequirement,Executor>> : true_type {};

template<>
struct is_execution_policy<execution::parallel_policy> : true_type {};

// parallel_policy specialization
template<class P, class I, class F>
void for_each(const execution::parallel_policy& policy, I first, I last, F f)
{

// do something parallel_policy-specific
...

}

// general purpose implementation for policies with an associated executor
template<class P, class I, class F,

class = enable_if_t<
is_execution_policy_v<decay_t<P>>

>>
void for_each(P&& policy, I first, I last, F f)
{

auto ex_ = execution::require(policy.executor(),
execution::bulk,
policy.execution_requirement,
execution::bulk_oneway,
execution::blocking.always

);

try
{

// try to execute via the executor
ex.bulk_execute(

[=](auto idx, auto&, auto&)
{

f(first[idx]);
},
distance(first, last),
[]{ return ignore; },
[]{ return ignore; }
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);
}
catch(bad_alloc)
{

try
{

// try again on this thread
for_each(first, last, f);

}
catch(...)
{

terminate();
}

}
}

1.6 Proposed Wording

1.6.1 Changes to [execpol.general]

Introduce these paragraphs:

The presence of a member function .executor() indicates that an execution policy has an associated executor,
and the value returned by that function is a copy of the associated executor.

Execution policies have a bulk execution requirement, described by the member variable execution_requirement, if
present. If absent, the execution policy’s bulk execution requirement is execution::bulk_guarantee.unsequenced.

The bulk execution guarantee of an execution policy’s associated executor satisfies the policy’s bulk execution
requirement.

1.6.2 Changes to [execpol.seq]

Replace execution::sequenced_policy class definition:

class execution::sequenced_policy { unspecified };

with

class execution::sequenced_policy
{
public:

constexpr static auto execution_requirement = execution::bulk_guarantee.sequenced;

template<class OtherExecutor>
see below on(const OtherExecutor& ex) const;

};

Introduce a member function sequenced_policy::on():

template<class OtherExecutor>
see below on(const OtherExecutor& ex) const;

Returns: An execution policy object policy identical to *this with the exception that the returned execution policy’s
associated executor is a copy of ex. execution::is_execution_policy<decltype(policy)>::value is true.

Remarks: This function shall not participate in overload resolution unless execution::can_require_v<OtherExecutor,
execution::bulk, decltype(execution_requirement)> is true.

1.6.3 Changes to [execpol.par]

Replace execution::parallel_policy class definition:
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class execution::parallel_policy { unspecified };

with

class execution::parallel_policy
{
public:

constexpr static auto execution_requirement = execution::bulk_guarantee.parallel;

template<class OtherExecutor>
see below on(const OtherExecutor& ex) const;

};

Introduce a member function sequenced_policy::on():

template<class OtherExecutor>
see below on(const OtherExecutor& ex) const;

Returns: An execution policy object policy identical to *this with the exception that the returned execution policy’s
associated executor is a copy of ex. execution::is_execution_policy<decltype(policy)>::value is true.

Remarks: This function shall not participate in overload resolution unless execution::can_require_v<OtherExecutor,
execution::bulk, decltype(execution_requirement)> is true.

1.6.4 Changes to [execpol.parunseq]

Replace execution::parallel_unsequenced_policy class definition:

class execution::parallel_unsequenced_policy { unspecified };

with

class execution::parallel_unsequenced_policy
{
public:

constexpr static auto execution_requirement = execution::bulk_guarantee.unsequenced;

template<class OtherExecutor>
see below on(const OtherExecutor& ex) const;

};

Introduce a member function sequenced_policy::on():

template<class OtherExecutor>
see below on(const OtherExecutor& ex) const;

Returns: An execution policy object policy identical to *this with the exception that the returned execution policy’s
associated executor is a copy of ex. execution::is_execution_policy<decltype(policy)>::value is true.

1.6.5 Changes to [algorithms.parallel.exec]

Replace [algorithms.parallel.exec] p4, p5, and p6 with the following paragraph:

4. The invocations of element access functions in parallel algorithms invoked with an execution policy object of type
execution::sequenced_policy all occur in the calling thread of execution. [Note: The invocations are not interleaved;
see 6.8.1. –end note]

5. The invocations of element access functions in parallel algorithms invoked with an execution policy object of type
execution::parallel_policy are permitted to execute in either the invoking thread of execution or in a thread of
execution implicitly created by the library to support parallel algorithm execution. If the threads of execution created by
thread (33.3.2) provide concurrent forward progress guarantees (6.8.2.2), then a thread of execution implicitly created
by the library will provide parallel forward progress guarantees; otherwise, the provided forward progress guarantee is
implementation-defined. Any such invocations executing in the same thread of execution are indeterminately sequenced
with respect to each other. [Note: It is the caller’s responsibility to ensure that the invocation does not introduce data
races or deadlocks. –end note]
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[Example:

int a[] = {0,1};
std::vector<int> v;
std::for_each(std::execution::par, std::begin(a), std::end(a), [&](int) {

v.push_back(i*2+1); // incorrect: data race
});

The program above has a data race because of the unsynchronized access to the container v.–end example]

[Example:

std::atomic<int> x{0};
int a[] = {1,2};
std::for_each(std::execution::par, std::begin(a), std::end(a), [&](int) {

x.fetch_add(1, std::memory_order::relaxed);
// spin wait for another iteration to change the value of x
while (x.load(std::memory_order::relaxed) == 1) { } // incorrect: assumes execution order

});

The above example depends on the order of execution of the iterations, and will not terminate if both iterations are
executed sequentially on the same thread of execution. –end example]

[Example:

int x = 0;
std::mutex m;
int a[] = {1,2};
std::for_each(std::execution::par, std::begin(a), std::end(a), [&](int) {

std::lock_guard<mutex> guard(m);
++x;

});

The above example synchronizes access to the object x ensuring that it is incremented correctly. –end example]

6. The invocations of element access functions in parallel algorithms invoked with an execution policy of type
execution::parallel_unsequenced_policy are permitted to execute in an unordered fashion in unspecified threads
of execution, and unsequenced with respect to one another within each thread of execution. These threads of execution
are either the invoking thread of execution or threads of execution implicitly created by the library; the latter will
provide weakly parallel forward progress guarantees. [Note: This means that multiple function object invocations may
be interleaved on a single thread of execution, which overrides the usual guarantee from 6.8.1 that function executions
do not interleave with one another. –end note] Since execution::parallel_unsequenced_policy allows the execution
of element access functions to be interleaved on a single thread of execution, blocking synchronization, including the use
of mutexes, risks deadlock. Thus, the synchronization with execution::parallel_unsequenced_policy is restricted
as follows: A standard library function is vectorization-unsafe if it is specified to synchronize with another function
invocation, or another function invocation is specified to synchronize with it, and if it is not a memory allocation
or deallocation function. Vectorization-unsafe standard library functions may not be invoked by user code called
from execution::parallel_unsequenced_policy algorithms. [Note: Implementations must ensure that internal
synchronization inside standard library functions does not prevent forward progress when those functions are executed
by threads of execution with weakly parallel forward progress guarantees. –end note] [Example:

int x = 0;
std::mutex m;
int a[] = {1,2};
std::for_each(std::execution::par_unseq, std::begin(a), std::end(a), [&](int) {

std::lock_guard<mutex> guard(m); // incorrect: lock_guard constructor calls m.lock()
++x;

});

The above program may result in two consecutive calls to m.lock() on the same thread of execution (which may deadlock),
because the applications of the function object are not guaranteed to run on different threads of execution. –end exam-
ple] [Note: The semantics of the execution::parallel_policy or the execution::parallel_unsequenced_policy
invocation allow the implementation to fall back to sequential execution if the system cannot parallelize an algorithm
invocation due to lack of resources. –end note]
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4. During parallel algorithm execution, execution policies may invoke element access functions on the thread which invoked
the parallel algorithm, or on execution agents created by their associated executor, if an associated executor exists.
Otherwise, element access functions may be invoked on execution policy-defined threads. [Note: It is the caller’s
responsibility to ensure that the invocation does not introduce data races or deadlocks. –end note]

[Example:

int a[] = {0,1};
std::vector<int> v;
std::for_each(std::execution::par, std::begin(a), std::end(a), [&](int) {

v.push_back(i*2+1); // incorrect: data race
});

The program above has a data race because of the unsynchronized access to the container v.–end example]

[Example:

std::atomic<int> x{0};
int a[] = {1,2};
std::for_each(std::execution::par, std::begin(a), std::end(a), [&](int) {

x.fetch_add(1, std::memory_order::relaxed);
// spin wait for another iteration to change the value of x
while (x.load(std::memory_order::relaxed) == 1) { } // incorrect: assumes execution order

});

The above example depends on the order of execution of the iterations, and will not terminate if both iterations are
executed sequentially on the same thread of execution. –end example]

[Example:

int x = 0;
std::mutex m;
int a[] = {1,2};
std::for_each(std::execution::par, std::begin(a), std::end(a), [&](int) {

std::lock_guard<mutex> guard(m);
++x;

});

The above example synchronizes access to the object x ensuring that it is incremented correctly. –end example]

[Example:

int x = 0;
std::mutex m;
int a[] = {1,2};
std::for_each(std::execution::par_unseq, std::begin(a), std::end(a), [&](int) {

std::lock_guard<mutex> guard(m); // incorrect: lock_guard constructor calls m.lock()
++x;

});

The above program may result in two consecutive calls to m.lock() on the same thread of execution (which may deadlock),
because the applications of the function object are not guaranteed to run on different threads of execution. –end exam-
ple] [Note: The semantics of the execution::parallel_policy or the execution::parallel_unsequenced_policy
invocation allow the implementation to fall back to sequential execution if the system cannot parallelize an algorithm
invocation due to lack of resources. –end note]

1.6.6 Additions to Executor Properties

Add a row to P0443’s execution::mapping_t table:
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Nested Property Type Nested Property Object Name Requirements
mapping_t::this_thread_t mapping::this_thread Each execution agent

created by the executor
is mapped onto the
thread on which the
originating execution
function was invoked.

1.7 Acknowledgements

Thanks to Michael Garland, Carter Edwards, Olivier Giroux, and Bryce Lelbach for reviewing this paper and suggesting
improvements, as well as SG1 and LEWG for their in-person feedback.

1.8 Changelog

1.8.1 R1

• Introduced explanation for why both execution policies and executors are necessary.
• Removed .executor() from standard policy types based on feedback from Rapperswil and Bellevue.

1.8.2 R0

• Initial paper.
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