
Document number: P0940R0
Date: 20180212 (Jacksonville)
Project: Programming Language C++, WG21, SG1, LEWG, LWG
Authors: Michael Wong, Olivier Giroux
Email: michael@codeplay.com, ogiroux@gmail.com
Reply to: michael@codeplay.com

Concurrency TS is growing: Concurrent
Utilities and Data Structures

Introduction 1

Organization Proposal 2

Proposed Structure 2

Acknowledgement 4

References 4

Introduction

This is a proposal for a draft new section to the C++ Standard to support SG1 Concurrency
features. We foresee a number of upcoming features for inclusion. We also foresee some
features in existing sections that are concurrency related that is worth moving into this new
section.

There is no wording yet until we agree on the structure of the reorganization.

mailto:michael@codeplay.com

Organization Proposal
A large number of Concurrency features are coming for C++20. This is because Concurrency
TS1 was not added to C++17. However some of the features in it has changed. There are also
many new features aiming for Concurrency TS2. Lets us recap.

Concurrency TS1 was published in Jan 19, 2016[P0159] but still too late for C++17. It contains

● atomic_shared_ptr and atomic_weak_ptr class templates
● Latches and barriers
● Improvements to std::future<T> and Related APIs

Since its publication and through usage feedback, several of these facilities have been
rethought. In a recent SG1 meeting in Toronto, Atomic_shared_ptr is now atomic<shared<ptr>>.
Latches and barriers is undergoing a partial redesign to split the arrive/wait facilities. Even
futures is being redesigned to serve the needs of executors, TLS, and other facilities better.

Concurrency TS2 is an ongoing WIP but should contain the following which has been making its
way through WG21/SG1:

● Executors that links concurrency and parallelism constructs with different execution
resources. There is a possibility that this may split off into its own TS.

● Constructs that deal with contention such as apply(), latch, basic_barrier<F>, typedef
barrier, binary_semaphore, counting_semaphore, synchronic

● Data structures such as Concurrent queues, counters, Synchronized<T>, Atomic_ref<T>
● Several synchronization primitives for locked-free programming on concurrent data

structures. These are cell, hazard ptr and RCU. These extends the existing shared_ptr
and the proposed atomic_shared_ptr which all have safe reclamation facilities. As such
we also propose moving shared_ptr and atomic<shared<ptr>> to this new location. We
suspect this part may be controversial, so would ask for discussion on this topic.

Given the proliferation of these and other facilities, as Concurrency TS editor, and before we
move sections and inject new wordings, we propose the following new chapter to handle these
concurrency utilities for Concurrency TS2 and TS1.

At this point, there is no plan to change or update Concurrency TS1. However, not all may
agree with that. We would also invite a discussion on this in the upcoming meeting.

Proposed Structure

Clause 34: Concurrency Utilities Library

● 34.1 Concepts
○ 34.1.1 Future
○ 34.1.2 Executor

● 34.2 Execution
○ 34.2.1 Executors
○ 34.2.2 require, prefer
○ 34.2.3 {concrete executors}

● 34.3 Contention
○ 34.3.1 apply()
○ 34.3.2 latch
○ 34.3.3 basic_barrier<F>
○ 34.3.4 typedef barrier
○ 34.3.5 binary_semaphore
○ 34.3.6 counting_semaphore
○ 34.3.7 synchronic

● 34.4 Data structures
○ 34.4.1 Concurrent queue
○ 34.4.2 Concurrent counters
○ 34.4.3 Synchronized<T>
○ 34.4.4 Atomic_ref<T>

● 34.5 Safe Reclamation
○ 34.5.1 cell
○ 34.5.2 RCU
○ 34.5.3 Hazard Pointers
○ 34.5.4 shared_ptr
○ 34.5.5 atomic<shared<ptr>>

The reason I am interested in moving the latter two into the section on concurrency in
some order with Safe Reclamation is that they are actually shared concurrency
structures. Shared_ptr exists where it does not (Clause 20 Smart Pointer) because at the
time, it was delivered with the Boost Smart pointer as a package. In this paper [P0233],
the authors illustrate in the table in Section 7 a comparison of the capabilities between
the various facilities for Reclamation. Reference Counting is the implementation behind
shared_ptr and Split reference Counting (or Reference Counting with DCAS) is the
implementation behind atomic_shared_ptr. These have many capabilities similar to
Hazard Pointers, Cell and RCU differing only in the performance and lock-free
implications.

We would ask SG1 to give guidance on this structure reorganization at the next meeting.

Acknowledgement
The author wishes to thank Maged Michael and Paul Mckenney for the comparison.

References
[P0159] Programming Languages — Technical Specification for C++ Extensions for Concurrency
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html
[P0233] Hazard Pointers: Safe Reclamation for Optimistic Concurrency
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0233r6.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html

