
Runtime type introspection with std::exception ptr
Aaryaman Sagar (aary@instagram.com)

February 7, 2018
Document #: p0933

Library Evolution Working Group

1. Introduction

Exceptions often manifest themselves via the type erased std::exception ptr handle. Many of the relevant programming mo-
dels and environments however, tend to not mix well with exceptions because of the limited capabilities of std::exception ptr.
And many platforms have even disabled exceptions entirely. This paper proposes adding RTTI features to std::exception ptr,
which will facilitate error introspection without having to go through the overhead of stack unwinding and exception propa-
gation.

2. Prevalence

Current interfaces that aim to generalize asynchronous I/O hook into std::exception ptr as a point of error propagation.
This is true for example with the current std::future interface. Further with asychronous continuations this feature is going
to be more widely used and implemented.

asynchronous_io (). then ([](std::future <Value > future) {

try {

cout << "Value " << future.get() << endl;

} catch (std:: runtime_error& err) {

cerr << err.what() << endl;

}

});

This interface wherein the exception is hidden behind the discriminated asynchronous monad is convenient but quickly
degrades to bad performance because of the repeated stack unwinding with std::exception ptr, this is especially true
when exceptions propagate through several layers of chained callbacks. Even outside user code, implementations themselves
might have to put a try catch block around the callbacks just for this purpose.

When an API has such drawbacks people look to either using some custom form of error propagation or coming up with their
own interfaces and deem exceptions underperformant. As an example Facebook’s folly futures, implement onError callbacks
and their own folly::exception wrapper to avoid some pathological inefficiencies with exceptions and std::exception ptr

asychronous_io (). then ([](Value value) {

cout << "Value " value << endl;

}). onError(std:: runtime_error& err) {

cerr << "Value " value << endl;

});

3. Current std::exception ptr implementations

Current std::exception ptr implementations contain mechanisms to fetch std::type info object that corresponds to the
type of the exception being pointed to. This can be found in the libstdc++ implementation here

const std:: type_info* __cxa_exception_type () const;

As far as I understand the Microsoft Visual C++ standard library has similar private functionality.

Given the existence of such introspection mechanisms, the first addition described in this proposal is to make the basic
type info method public

1

https://goo.gl/u4oYcv

Runtime type introspection with std::exception ptr 2

class exception_ptr {

public:

// ...

/**

* Queries the exception_ptr for the type of the exception object

* contained internally

*/

const std:: type_info& type() const noexcept;

};

Given the above RTTI extraction interface, it is natural to also include a way to fetch the underlying object itself. Without
which the above would be simply a read-only operation.

class exception_ptr {

public:

// ...

/**

* Queries the exception_ptr for the type of the exception object

* contained internally

*/

const std:: type_info& type() const noexcept;

/**

* Returns a pointer to the contained exception object

*/

const void* get() const noexcept;

};

The get() method above returns a const void* pointer instead of a void* because of an existing note in the standard
recommending copying to avoid issues around data races (§[propagation]p7)

(Note: If rethrow exception rethrows the same exception object (rather than a copy), concurrent access to that
rethrown exception object may introduce a data race. Changes in the number of exception ptr objects that
refer to a particular exception do not introduce a data race. - end note)

Returning a const void* forces callers to avoid unsafe concurrent mutations on the underlying exception object.

Existing implementations of rethrow exception however do not adhere to this guideline and rethrow the same exception
object. Whether or not this guideline still holds is better discussed in another paper. For the rest of this paper, get() returns a
const void* (subject to change based on the conclusions around possible misinterpretations and/or misguided justifications
of the above note)

4. Interoperability with std::any

C++17 also provided a convenient utility to generalize discriminated monadic storage - std::any. Both the implementations
of std::exception ptr and std::any allow fetching std::type info objects for the underlying object or exception.

std::any provides access to an instance of any type, this is hidden behind a type erased interface. This closely resembles
what exceptions do, the type of the exception is hidden behind the function until the information is made available as a
part of the stack unwinding process. std::exception ptr should provide a method to allow fetching of the discriminated
instance as a std::any

class exception_ptr {

public:

// ...

/**

* Queries the exception_ptr for the type of the exception object

* contained internally

2

Runtime type introspection with std::exception ptr 3

*/

const std:: type_info& type() const noexcept;

/**

* Returns a pointer to the contained exception object

*/

const void* get() const noexcept;

/**

* Return an std::any object that contains a copy of the underlying stored

* exception

*/

std::any any() const;

};

This is simple and becomes a point of reusability for two separate interfaces that solve similar problems.

4.1. What about the note discussed in §[propagation]?

Like the discussion around get() for now, std::exception ptr::any() returns an instance of std::any initialized with a
copy of the underlying exception object. If the conclusion is that exception ptr should provide mutable handles, then
std::exception ptr::any() should be modified to return an instance initialized with a pointer to the underlying exception
object

4.2. Dealing with recursive exception propagation

The interaface must not return properly when an exception propagates while copying the underlying exception instance to
prevent infinite exception recursion. So if a call to std::exception ptr::any() causes an exception to be thrown from
the underlying exception object, the implementation might throw a std::bad exception object possibly causing abnormal
program termination via std::terminate

5. Efficient representation

As the current proposal has been outlined a typical std::exception ptr class is logically equivalent to a reference coun-
ted shared pointer to type erased discriminated storage - std::shared ptr<std::any>. However this is just a logical
representation. Implementations are free to strip away any unnnecesary indirections to make serialization to and from
std::exception ptr via std::make exception ptr and other std::exception ptr instances performant.

Allowing std::exception ptr instances to be aware of each other’s internals also provides the bonus that we can now
translate uniformly between different std::exception ptr instances without having to go through the overhead of stack
unwinding for RTTI extraction. This also means that we can now limit std::exception ptr creation to a single dynamic
storage allocation

6. Extracting the underlying exception

It natually follows that we need an efficient method of extracting the underlying exception from an exception ptr

auto exception = exception_ptr.extract <std:: runtime_error >();

This is implemented as if by

template <typename Exc >

std::optional <std:: remove_cvref_t <Exc >>

exception_ptr :: extract () const {

try {

3

Runtime type introspection with std::exception ptr 4

std:: rethrow_exception (*this);

} catch(const Exc& err) {

return err;

} catch (...) {

return std:: nullopt;

}

}

Where the underlying exception is copied (possibly more than once) and returned. The rules listed in [except.handle]

apply.

6.1. Copies? What about the note discussed in §[propagation]?

If reference handles can and should be allowed from execption ptr, the std::exception ptr::extract method and hy-
pothetical implementation should be appropriately modified

template <typename Exc >

std::optional <add_reference_wrapper_t <Exc >> exception_ptr :: extract () const {

try {

std:: rethrow_exception (*this);

} catch(Exc err) {

return err;

} catch (...) {

return std:: nullopt;

}

}

Note that this does not add an additional std::remove cvref<T> to the return type to force a reference return. Users can
be allowed to extract references to the underlying object by explicitly specifying an extract operation with a ref-qualified
type. If the type is a refernece type then the returned optional is instantiated with a reference wrapper indirection around
the given type. For example

auto one = ptr.extract <std:: runtime_error >();

auto two = ptr.extract <std:: runtime_error &>();

std::exception ptr would now look like this

class exception_ptr {

public:

// ...

/**

* Queries the exception_ptr for the type of the exception object

* contained internally

*/

const std:: type_info& type() const noexcept;

/**

* Returns a pointer to the contained exception object

*/

const void* get() const noexcept;

/**

* Return an std::any object that contains a copy of the underlying stored

* exception

*/

std::any any() const;

/**

* Extracts a copy of the underlying stored exception , if an incompatible

* type is passed , nullopt is returned

4

Runtime type introspection with std::exception ptr 5

*/

template <typename Exc >

std::optional <std:: remove_cvref_t <Exc >> extract () const;

};

7. Visitation with std::exception ptr

Given that we have a mechanism to extract runtime type information from an exception ptr we should have an efficient
mechanism to handle errors without going through the overhead of stack unwinding with the same conditions as with regular
exception handling. This should look and feel familiar to users

exception_ptr.handle(

[&](std:: runtime_error& exc) {

cerr << exc.what() << endl;

},

[&](std:: logic_error& exc) {

cerr << exc.what() << endl;

},

[&](std:: exception& exc) {

cerr << exc.what() << endl;

},

[&](...) {

std:: terminate ();

});

This would need to follow the same rules as exception catching via catch clauses. The rules listed in [except.handle]

apply. Here E is the type of the exception stored in the exception ptr either via std::make exception ptr or via a call to
std::current exception() in the presence of exception propagation where E is std::remove cvref t<CE>, CE being the
cv-ref qualified type of the exception in the current catch clause, or the type of the object initially thrown.

The handle clauses must be unary functions that accept a type E and return void. Polymorphic lambdas, functors with
templated operator() methods or invocables accepting more than one argument (either templated or not) do not qualify as
valid arguments and the resulting program is ill formed if those are passed.

If the catch-all clause is not included and none of the handlers are a good match for the exception as determined by the rules
in [except.handle], std::terminate() is called.

std::exception ptr would now look like this

class exception_ptr {

public:

// ...

/**

* Queries the exception_ptr for the type of the exception object

* contained internally

*/

const std:: type_info& type() const noexcept;

/**

* Returns a pointer to the contained exception object

*/

const void* get() const noexcept;

/**

* Return an std::any object that contains a copy of the underlying stored

* exception

*/

std::any any() const;

/**

5

Runtime type introspection with std::exception ptr 6

* Extracts a copy of the underlying stored exception , if an incompatible

* type is passed , nullopt is returned

*/

template <typename Exc >

std::optional <std:: remove_cvref_t <Exc >> extract () const;

/**

* Handles the exception as if by the same rules as normal exception

* handling

*

* The HandleClauses clauses must be unary functions that accept one

* cv -ref qualified argument and return void

*

* In the case where none of the handle clauses match , std:: terminate () is

* called

*

* A terminal closure or function that accepts elipses may be passed to

* override the default behavior of std:: terminate () being called in the

* default case

*/

template <typename ... HandleClauses >

void handle(HandleClauses &&... handle_clauses) const;

};

Given the std::exception ptr::extract method, std::exception ptr::handle performs as if implemented as so

template <typename Head , typename ... Tail >

void handle(HeadClause& head , Tail &&... handle_clauses) const {

// Failure case if applicable

if constexpr (is_elipses_arg_type <Head >) {

static_assert(

sizeof ...(Tail) == 0,

"Ellipses handler must be last argument ");

head ();

}

auto exception = this ->extract <extract_arg_type_t <Head >& >();

if (exception) {

head(* exception);

return;

}

this ->handle(std::forward <Tail >(tail)...);

}

Of course implementations are highly encouraged not to cause repeated stack unwinding, as the premise of providing such
introspection was to avoid repeated stack unwinding while still allowing multiplexing many different error types with the
same exception

7.1. §[propagation]p7?

Whether or not the note interpretation holds as discussed in the above sections the hypothetical implementation stays the
same. An additional copy will be created in the situation where the note interpretation holds because of the additional
std::remove cvref on the return type of extract. If it doesn’t, a reference to the underlying exception will be passed

6

	Introduction
	Prevalence
	Current std::exception_ptr implementations
	Interoperability with std::any
	What about the note discussed in §[propagation]?
	Dealing with recursive exception propagation

	Efficient representation
	Extracting the underlying exception
	Copies? What about the note discussed in §[propagation]?

	Visitation with std::exception_ptr
	§[propagation]p7?

