
Document Number: P0917R1

Date: 2018-05-06

Reply-to: Matthias Kretz <m.kretz@gsi.de>

Audience: EWG

Making operator?: overloadable

ABSTRACT

This paper explores user-defined overloads of operator?:.

CONTENTS

1 Introduction 1
2 Motivation 1
3 Choices 3
4 Wording 7
5 Changelog 7
6 Straw Polls 8
A Bibliography 8

P0917R1 1 Introduction

1 INTRODUCTION

Most operators in C++ can be overloaded. The few exceptions are: ?:, ::, ., .*. For
the conditional operator, Stroustrup [2] writes: “There is no fundamental reason to
disallow overloading of ?:. I just didn’t see the need to introduce the special case of
overloading a ternary operator. Note that a function overloading expr1?expr2:expr3
would not be able to guarantee that only one of expr2 and expr3 was executed.”

In this paper I want to show a need for overloading the conditional operator as
well as present a possiblity of deferred evaluation of expr2 and expr3.

2 MOTIVATION

2.1 be general

“Don’t restrict what is inherent. Don’t arbitrarily restrict a complete set of uses. Avoid
special cases and partial features.” [P0745R0]

C++ allows operator overloading for almost all operators. Operator-dot overloading
is under consideration in the committee [P0352R1, P0416R1]. This leaves operator?:
as the last missing piece1.

2.2 blend operations

The conditional operator is a perfect match for expressing blend operations generi-
cally, i.e. so that fundamental types still work with the same syntax. Consider [N4744],
where a certain number (determined at compile time) of values of arithmetic type T
are combined to a single object of type simd<T, Abi>. All operators act element-wise
and concurrently. Thus, the meaning of
template <class T> T abs(T x) {

return x < 0 ? -x : x;
}

intuitively translates from fundamental types to simd types: Element-wise application
of the conditional operator blends the elements of -x and x into a single simd object
according to the simd_mask object (x < 0). The alternative solution for simd blend
operations is to use a function, such as “inline-if”:
template <class T> T abs(T x) {

return iif(x < 0, -x, x);
}

1 Maybe operator:: as well. I didn’t take much time to consider what it would mean, though.

1

P0917R1 2 Motivation

This is less intuitive, since the name is either long or cryptic, and the arguments
appear to be arbitrarily ordered (comma doesn’t convey semantics such as ? and :
do). More importantly, if x is a builtin type, the function will not be found via ADL;
consequently, user code requires return std::experimental::iif(x < 0, -x, x)
to be generic. This is annoying and easily forgotten since ADL works fine for simd
arguments.

It is not possible (and not a good idea, in my opinion) to overload if statements
and iteration statements for non-boolean conditions. Thus, to support any “collection
of bool”-like type in conditional expressions using built-in syntax, the conditional
operator is the only candidate.

Considering cases where generality of the syntax, i.e. extension from the built-in
case to user-defined types, is important, we see that all such use cases will have a
type for the condition that is not contextually convertible to bool because the user-
defined condition object stores multiple boolean states. Overloading the conditional
operator is thus most interesting for stating conditional evaluation of multiple data
sets without imposing an order and thus enabling parallelization.

2.3 embedded domain specific languages

Embedded domain specific languages in C++ often redefine operators for user-defined
types to create a new language embedded into C++. Having the conditional operator
available makes C++ more versatile for such uses. Most sensible uses of the condi-
tional operator will likely be similar to the “blend operations” case discussed for simd
types, though. The motivation is not as strong as in the above case, since in most
cases substitutability of the code to fundamental types is not a goal.

2.4 increased flexibility about participating types

Consider the bounded::integer example (cf. [1]):
1 bounded::integer<1, 100> const a = f();
2 bounded::integer<-3, 7> const b = g();
3 bounded::integer<-2, 107> c = a + b;
4 bounded::integer<-3, 100> d = some_condition ? a : b;

Line 3 is what the bounded::integer library can currently do for you. However,
line 4 is currently not possible since it would require more control by the library over
the types involved (arguments and result) with the conditional operator.

Any design that wants to allow different types on the second and third argument
(without implicit conversions), and determine a return type from them, requires an
overloadable conditional operator.

2

P0917R1 3 Choices

2.5 existing practice

GCC implements support for the conditional operator to allowing blending its vec-
tor builtins. OpenCL uses the conditional operator for blending operations. Allowing
overloads of operator?: in C++ enables users to implement blend semantics with the
same syntax as provided by GCC and OpenCL.

3 CHOICES

The main issue to decide when considering overloading the conditional operator, is
deferred evaluation of the second and third expressions. [expr.cond]/1 specifies “Only
one of the second and third expressions is evaluated”. If the signature of overloadable
operator?: were T operator?:(U, T, T) then all three expressions must be eval-
uated before calling the user-defined operator. To resolve this, the signature could
be defined as T operator?:(U, F0, F1), where F0 and F1 are callables with return
type T. Calling code such as auto x = cond ? a + b : g(a, b) could then be trans-
formed to auto x = operator?:(cond, [&]() return a + b; , [&]() return
g(a, b);).

This could be taken one step further: Instead of passing a callable, pass an object
that is implicitly convertible to T. Its conversion operator invokes the expression. This
may be easier to use, but it’s also easier to use badly (as in invoking the conversion
operator multiple times). I believe such an approach is too magical, so I will not pursue
it further in this paper.

Dennett et al. [P0927R0] propose an extension that would easily solve the issue.
Thus, if P0927R0 is adopted, the issue of deferred evaluation is easily resolved and
under full control of the developer introducing the operator overload.

If P0927R0 is not adopted, we have two choices for the signature of the conditional
operator overload (cf. Figure 1):

1. The simple approach, which follows the rules of the other operator overloads:

template <class T, class U>
MyReturnType<T, U> operator?:(MyCondition<T, U> c, T a, U b) {

if (c) {
return a;

} else {
return b;

}
}

3

P0917R1 3 Choices

The expression x = c ? f(a, b) : g(a, b) means x = operator?:(c, f(a,
b), g(a, b)).

2. An approach to support deferred evaluation:

template <class F0, class F1,
class T = std::invoke_result_t<F0>,
class U = std::invoke_result_t<F1>>

MyReturnType<T, U> operator?:(MyCondition<T, U> c, F0 a, F1 b) {
if (c) {

return a();
} else {

return b();
}

}

The expression x = c ? f(a, b) : g(a, b) means x = operator?:(c, [&]()
{ return f(a, b); }, [&]() { return g(a, b); }).

3.1 overload resolution

Choice 1 allows overload resolution on the types for the second and third argument.
If we want to support overloads using bool for the first argument, then choosing the
overload via the types of the remaining arguments is important.

Choice 2 requires considerably more complex overload resolution rules. Consider
template <class F0, class F1> UDT operator?:(bool, F0, F1), where F0 and
F1 return a prvalue of type UDT. The built in operator would be viable for some_bool
? udt_object_a : udt_object_b and the overload, even without transformation of
the expressions into lambda. I.e. the user-defined operator, requires a constraint that
F0 and F1 are callables. Assuming we had this, we’d now have to require all uses of
the conditional operator to consider both the implicit-lambda wrapper and the di-
rect use of the built in operator for overload resolution. Should a viable user-defined
conditional operator with an implicit-lambda wrapper then always be prefered over
the built in operator? It seems this would be required. Consequently, it is very im-
portant that user-defined conditional operators use exact constraints on the second
and third parameter types.

3.2 life-time extension (non-)issue

Using choice 2, there is a case where life-time extension does not work, where it
would otherwise work in the built-in case. Consider:

4

P0917R1 3 Choices

template <class T0, class T1>
const auto ternary1(bool c, T0 &&yes, T1 &&no) {

if (c) return std::forward<T0>(yes);
return std::forward<T1>(no);

}

template <class F0, class F1>
const auto ternary2_impl(bool c, F0 &&yes, F1 &&no) {

if (c) return yes();
return no();

}
#define ternary2(c_, yes_, no_) \
ternary2_impl((c_), [&]() { return yes_; }, \

[&]() { return no_; })

int a();
int b();

int f1(bool c) {
return ternary1(c, a(), b());

}
int f2(bool c) {

return ternary2(c, a(), b());
}
int f3(bool c) {

return c ? a() : b();
}

f1(bool):
pushq %rbp
pushq %rbx
pushq %rax
movl %edi, %ebx
callq a()
movl %eax, %ebp
callq b()
testb %bl, %bl
cmovnel %ebp, %eax
addq $8, %rsp
popq %rbx
popq %rbp
retq

f2(bool):
testb %dil, %dil
je .LBB1_2
jmp a()
.LBB1_2:
jmp b()

f3(bool):
testb %dil, %dil
je .LBB2_2
jmp a()
.LBB2_2:
jmp b()

Figure 1: Demonstration of the two choices compared to a builtin conditional opera-
tor (f3), cf. https://godbolt.org/g/tpPrVR

5

https://godbolt.org/g/tpPrVR

P0917R1 3 Choices

template <class F0, class F1>
const auto &operator?:(MyCond c, F0 &&yes, F1 &&no) {

if (c) {
return yes();

}
return no();

}

const auto &x = c ? a + b : a - b;

In this case the temporary is produced inside the operator?: function, and thus
returning a const-ref returns a reference to a local temporary object. Using choice 1,
the temporary is produced before calling the overloaded operator, and thus lifetime
extension would make the last line well-formed. The simple solution here is to return
auto instead of const auto &, so this issue appears to be rather academic.

3.3 allow different types?

The operator signature could enforce the types of the second and third expression
to be equal, implicitly/explicitly convertible, or arbitrary. I believe the most flexible
tool for users will be to allow arbitrarily different types. Users can put a restriction in
place by themselves.

3.4 is there a need for deferred evaluation?

Consider a conceivable implementation of the conditional operator using choice 1 for
simd<T, Abi>:
template <class T, class Abi>
simd<T, Abi> operator?:(simd_mask<T, Abi> mask, simd<T, Abi> a, simd<T, Abi> b) {

if (all_of(mask)) [[unlikely]] {
return a;

} else if (none_of(mask)) [[unlikely]] {
return b;

}
where(mask, b) = a;
return b;

}

If this code is inlined, the compiler will know how to improve the calling code without
the need for explicit deferred evaluation of a and b. Only if the expressions in the
second and third argument to the conditional operator have side effects, is the dif-
ference important.

6

P0917R1 4 Wording

Consider a possible implementation of the conditional operator for bounded::in-
teger:
template <BoundedInteger T0, BoundedInteger T1>
common_type_and_value_category_t<T0, T1> operator?:(bool cond, T0 a, T1 b) {

return cond ? static_cast<common_type_and_value_category_t<T0, T1>>(a)
: static_cast<common_type_and_value_category_t<T0, T1>>(b);

}

Again, inlining can cover all the important cases (i.e. all but side effects).
In the presence of inlining (and link-time optimizations), I would prefer to go with

choice 1.

• I believe we do not have to complicate the language to support conditional side
effects in overloaded conditional operators.

• Choice 1 is less of an implementation burden.

• Choice 1 is simpler to use and understand, even if slightly less powerful.

• Choice 2 would break with the overload syntax of all other overloadable oper-
ators.

If a mechanism as suggested in Dennett et al. [P0927R0] is adopted, I’d be strongly
in favor of choice 1 / against choice 2.

4 WORDING

TBD.

5 CHANGELOG

5.1 changes from r0

Previous revision: [P0917R0].

• Added bounded::integer motivation and example.

• Added a reference to [P0927R0]; making a stronger case for the simple choice.

7

P0917R1 6 Straw Polls

6 STRAW POLLS

A BIBLIOGRAPHY

[P0927R0] James Dennett and Geoff Romer. P0927R0: Towards A (Lazy) Forwarding
Mechanism for C++. ISO/IEC C++ Standards Committee Paper. 2018. url:
https://wg21.link/p0927r0.

[N4744] Jared Hoberock, ed. Technical Specification for C++ Extensions for Paral-
lelism Version 2. ISO/IEC JTC1/SC22/WG21, 2018. url: https://wg21.link/
n4744.

[P0917R0] Matthias Kretz. P0917R0: Making operator?: overloadable. ISO/IEC C++
Standards Committee Paper. 2018. url: https://wg21.link/p0917r0.

[1] David Stone. davidstone / bounded_integer — Bitbucket. url: https://
bitbucket.org/davidstone/bounded_integer (visited on 02/26/2018).

[2] Bjarne Stroustrup. Stroustrup: C++ Style and Technique FAQ. url: http :
/ / www . stroustrup . com / bs _ faq2 . html # overload - dot (visited on
01/31/2018).

[P0416R1] Bjarne Stroustrup and Gabriel Dos Reis. P0416R1: Operator Dot (R3). ISO/IEC
C++ Standards Committee Paper. 2016. url: https://wg21.link/p0416r1.

[P0745R0] Herb Sutter. P0745R0: Concepts in-place syntax syntax. ISO/IEC C++ Stan-
dards Committee Paper. 2018. url: https://wg21.link/p0745r0.

[P0352R1] Hubert Tong and Faisal Vali. P0352R1: Smart References through Delega-
tion. ISO/IEC C++ Standards Committee Paper. 2017. url: https://wg21.
link/p0352r1.

8

https://wg21.link/p0927r0
https://wg21.link/n4744
https://wg21.link/n4744
https://wg21.link/p0917r0
https://bitbucket.org/davidstone/bounded_integer
https://bitbucket.org/davidstone/bounded_integer
http://www.stroustrup.com/bs_faq2.html#overload-dot
http://www.stroustrup.com/bs_faq2.html#overload-dot
https://wg21.link/p0416r1
https://wg21.link/p0745r0
https://wg21.link/p0352r1
https://wg21.link/p0352r1

	1 Introduction
	2 Motivation
	2.1 Be General
	2.2 Blend Operations
	2.3 Embedded Domain Specific Languages
	2.4 Increased flexibility about participating types
	2.5 Existing Practice

	3 Choices
	3.1 Overload Resolution
	3.2 Life-time Extension (Non-)Issue
	3.3 Allow different types?
	3.4 Is there a need for deferred evaluation?

	4 Wording
	5 Changelog
	5.1 Changes from R0

	6 Straw Polls
	A Bibliography

