
Document Number: P0898R1
Date: 2018-04-02
Reply to: Casey Carter

casey@carter.net
Audience: Library Evolution Working Group,

Library Working Group

Standard Library Concepts

Note: this is an early draft. It’s known to be incomplet and incorrekt, and it has lots of bad
formatting.

Contents
1 Introduction 1

1.1 Revision History . 1
1.2 Renaming "requirements tables" . 2
1.3 Style of presentation . 2

20 Library introduction 3
20.1 General . 3
20.3 Definitions . 3
20.4 Method of description (Informative) . 3
20.5 Library-wide requirements . 5

22 Concepts library 5
22.1 General . 6
22.2 Header <concepts> synopsis . 7
22.3 Core language concepts . 9
22.4 Comparison concepts . 14
22.5 Object concepts . 17
22.6 Callable concepts . 17

23 General utilities library 18
23.2 Utility components . 18
23.14 Function objects . 18
23.15 Metaprogramming and type traits . 19

29 Numerics library 21
29.6 Random number generation . 21

Index 23

Index of library names 24

ii

1 Introduction [intro]
Proposal P0802R0 "Applying Concepts to the Standard Library" and the LEWG discussion thereof captured
in P0872R0 "Discussion Summary: Applying Concepts to the Standard Library" call for a proposal to insert
the concepts library from the Ranges TS into the C++20 WD. This is that proposal.
The motivating discussion from P0802R0 suggests that the Ranges TS can provide a basis of concepts for
use in other library work, so we can avoid a string of proposals that all define small variations on common
ideas:

How can the C++ Concepts core language feature be best applied to the standard library?
It seems clear that the basis for introducing concepts to the standard library must be the Ranges
TS. That paper encapsulates the committee’s knowledge and experience with fundamental library
concepts and how these library concepts can be applied to improve the existing standard library.
The Ranges TS has been implemented and exposed to the C++ community for several years;
any other approach would be pure invention and speculation.
The Ranges TS has two separable components: a library of fundamental concepts (TS Clauses
6 and 7), and revisions of existing library components (TS Clauses 8-12, also known as STL2).
The characteristics of these two components are quite different, so they should be considered and
adopted separately.

This proposal includes the "library of fundamental concepts," the "revisions of existing library components"
are in the sister proposal P0896. Again quoting P0802R0:

Recommendation: Fundamental Library Concepts
Ranges TS clause 7 (Concepts library) should adopted by the C++20 WP as soon as a proposal
can be prepared and processed by LEWG/LWG. We recommend that Casey Carter and Eric
Niebler lead this effort and that they be given sufficient authority to include other fundamental
material from the Ranges TS.
Rationale: The fundamental concepts are mature and well-known, as they are based on stan-
dard library requirements that have been developed and refined from C++98 onward. Because
concepts are an entirely new core language feature, these fundamental concepts can be defined
in the standard library without breaking any existing C++ code (modulo the usual namespace
caveats). Furthermore, failure to standardize these fundamental concepts quickly is likely to
result in proliferation of similar but subtly different user-supplied concepts, often with the same
names. Confusion seems inevitable under such circumstances.

This document proposes the following parts of the Ranges TS for inclusion in C++20:

— The Concepts library (Clause 7) to be defined in namespace std inside a new <concepts> header

— Portions of the utilities library which do not break existing code: the identity function object, changes
to common_type and the addition of the common_reference type trait

— The numerics library (which consists of only the UniformRandomBitGenerator concept)

Some of the library concepts introduced share the names of requirement tables defined in [utility.arg.requirements];
the names of those requirement tables are changed to "make way".

1.1 Revision History [intro.history]
1.1.1 Revision 1 [intro.history.r1]
— Fix typo in common_type wording due to editorial error incorporating the PR for Ranges issue #506.

— Strike mentions of namespace std2 from the library introduction.

1

https://wg21.link/p0802r0
https://wg21.link/p0872r0

— Reformulate concepts Swappable and SwappableWith in terms of the is_swappable and is_swappable_-
with type traits.

— Strike the specification of the std2::swap customization point object.

1.2 Renaming "requirements tables" [intro.stl1]
1 [Editor’s note: Before applying the changes in the remainder of this specification, prepend the prefix "STL1"

to uses of the names below in the Standard Library clauses:]

—(1.1) EqualityComparable

—(1.2) DefaultConstructible

—(1.3) MoveConstructible

—(1.4) CopyConstructible

—(1.5) MoveAssignable

—(1.6) CopyAssignable

—(1.7) Destructible

This document reuses these names for concept definitions.
[Editor’s note: What about "swappable"/"swappable with"/"swappable requirements"?]

1.3 Style of presentation [intro.style]
1 The remainder of this document is a technical specification in the form of editorial instructions directing

that changes be made to the text of the C++ working draft. The formatting of the text suggests the origin
of each portion of the wording.
Existing wording from the C++ working draft - included to provide context - is presented without decoration.
Entire clauses / subclauses / paragraphs incorporated from the ISO/IEC 21425:2017 (the "Ranges TS") are
presented in a distinct cyan color.
In-line additions of wording from the Ranges TS to the C++ working draft are presented in cyan with
underline.
In-line bits of wording to be struck from the C++ working draft are presented in red with strike-through.
Wording to be added which is original to this document appears in gold with underline.
Wording from the Ranges TS which IS NOT to be added to the C++ working draft is presented in magenta
with strikethrough.
Ideally, these formatting conventions make it clear which wording comes from which document in this three-
way merge.

2

20 Library introduction [library]
20.1 General [library.general]
[Editor’s note: Modify Table 15 as follows (note that the consequent renumbering of the clauses following
the newly-inserted "Concepts library" is NOT depicted here or in the remainder of this document for ease
of review):]

Table 15 — Library categories

Clause Category
Clause 21 Language support library
Clause 22 Concepts library
Clause 22 Diagnostics library
Clause 23 General utilities library
Clause 24 Strings library
Clause 25 Localization library
Clause 26 Containers library
Clause 27 Iterators library
Clause 28 Algorithms library
Clause 29 Numerics library
Clause 30 Input/output library
Clause 31 Regular expressions library
Clause 32 Atomic operations library
Clause 33 Thread support library

[Editor’s note: Add a new paragraph between paragraphs 4 and 5:]
5 The concepts library (Clause 22) describes library components that C++ programs may use to perform

compile-time validation of template parameters and perform function dispatch based on properties of types.

20.3 Definitions [definitions]
[Editor’s note: Add a new definition for "expression-equivalent":]

20.3.11 [defns.expression.equivalent]
expression-equivalent
relationship that exists between two expressions E1 and E2 such that

— E1 and E2 have the same effects,

— noexcept(E1) == noexcept(E2), and

— E1 is a constant subexpression if and only if E2 is a constant subexpression

20.4 Method of description (Informative) [description]
20.4.1 Structure of each clause [structure]
20.4.1.2 Summary [structure.summary]
[Editor’s note: Add a new bullet to the list in paragraph 2:]

2 The contents of the summary and the detailed specifications include:

—(2.1) macros

—(2.2) values

—(2.3) types

3

—(2.4) classes and class templates

—(2.5) functions and function templates

—(2.6) objects

—(2.7) concepts

20.4.1.3 Requirements [structure.requirements]
[Editor’s note: Modify paragraph 1 as follows:]

1 Requirements describe constraints that shall be met by a C++ program that extends the standard library.
Such extensions are generally one of the following:
—(1.1) Template arguments

—(1.2) Derived classes

—(1.3) Containers, iterators, and algorithms that meet an interface convention or satisfy a concept
[Editor’s note: Modify paragraph 4 as follows:]

4 Requirements are stated in terms of well-defined expressions that define valid terms of the types that satisfy
the requirements. For every set of well-defined expression requirements there is either a named concept or a
table that specifies an initial set of the valid expressions and their semantics. Any generic algorithm (28) that
uses the well-defined expression requirements is described in terms of the valid expressions for its template
type parameters.
[Editor’s note: Add new paragraphs after the existing paragraphs:]

7 Required operations of any concept defined in this document need not be total functions; that is, some
arguments to a required operation may result in the required semantics failing to be satisfied. [Example: The
required < operator of the StrictTotallyOrdered concept (22.4.4) does not meet the semantic requirements
of that concept when operating on NaNs.—end example] This does not affect whether a type satisfies the
concept.

8 A declaration may explicitly impose requirements through its associated constraints (17.4.2). When the
associated constraints refer to a concept (17.6.8), additional semantic requirements are imposed on the use
of the declaration.

20.4.2 Other conventions [conventions]
20.4.2.1 Type descriptions [type.descriptions]
[Editor’s note: Add a new subclause after [character.seq]:]

20.4.2.1.6 Customization Point Object types [customization.point.object]
1 A customization point object is a function object (23.14) with a literal class type that interacts with user-

defined types while enforcing semantic requirements on that interaction.
2 The type of a customization point object shall satisfy Semiregular (22.5.3).
3 All instances of a specific customization point object type shall be equal (22.1.1).
4 The type of a customization point object T shall satisfy Invocable<const T&, Args...> (22.6.2) when

the types of Args... meet the requirements specified in that customization point object’s definition.
OtherwiseWhen the types of Args... do not meet the customization point object’s requirements, T shall
not have a function call operator that participates in overload resolution.

5 Each customization point object type constrains its return type to satisfy a particular concept.
6 The library defines several named customization point objects. In every translation unit where such a name

is defined, it shall refer to the same instance of the customization point object.
7 [Note: Many of the customization point objects in the library evaluate function call expressions with an

unqualified name which results in a call to a user-defined function found by argument dependent name
lookup (6.4.2). To preclude such an expression resulting in a call to unconstrained functions with the same
name in namespace std, customization point objects specify that lookup for these expressions is performed
in a context that includes deleted overloads matching the signatures of overloads defined in namespace std.
When the deleted overloads are viable, user-defined overloads must be more specialized (17.5.6.2) or more
constrained (17.4.4) to be used by a customization point object. —end note]

4

20.5 Library-wide requirements [requirements]
20.5.1.2 Headers [headers]
[Editor’s note: Add header <concepts> to Table 16]

Table 16 — C++ library headers

<algorithm> <fstream> <new> <string_view>
<any> <functional> <numeric> <strstream>
<array> <future> <optional> <syncstream>
<atomic> <initializer_list> <ostream> <system_error>
<bitset> <iomanip> <queue> <thread>
<charconv> <ios> <random> <tuple>
<chrono> <iosfwd> <ratio> <type_traits>
<codecvt> <iostream> <regex> <typeindex>
<compare> <istream> <scoped_allocator> <typeinfo>
<complex> <iterator> <set> <unordered_map>
<concepts> <limits> <shared_mutex> <unordered_set>
<condition_variable> <list> <sstream> <utility>
<deque> <locale> <stack> <valarray>
<exception> <map> <stdexcept> <variant>
<execution> <memory> <streambuf>
<filesystem> <memory_resource> <vector>
<forward_list> <mutex> <string>

20.5.4 Constraints on programs [constraints]
20.5.4.8 Other functions [res.on.functions]
[Editor’s note: Modify paragraph 2 as follows:]

2 In particular, the effects are undefined in the following cases:

—(2.1) for replacement functions (21.6.2), if the installed replacement function does not implement the se-
mantics of the applicable Required behavior: paragraph.

—(2.2) for handler functions (21.6.3.3, 21.8.4.1), if the installed handler function does not implement the
semantics of the applicable Required behavior: paragraph

—(2.3) for types used as template arguments when instantiating a template component, if the operations on
the type do not implement the semantics of the applicable Requirements subclause (20.5.3.5, 26.2, 27.2,
28.3, 29.3). Operations on such types can report a failure by throwing an exception unless otherwise
specified.

—(2.4) if any replacement function or handler function or destructor operation exits via an exception, unless
specifically allowed in the applicable Required behavior: paragraph.

—(2.5) if an incomplete type (6.7) is used as a template argument when instantiating a template component
or evaluating a concept, unless specifically allowed for that component.

[Editor’s note: Add a new subclause after [res.on.required]:]

20.5.4.12 Semantic requirements [res.on.requirements]
1 If the semantic requirements of a declaration’s constraints (20.4.1.3) are not satisfied at the point of use, the

program is ill-formed, no diagnostic required.

22 Concepts library [concepts.lib]
[Editor’s note: Add new Clause "Concepts library"]

5

22.1 General [concepts.lib.general]
1 This Clause describes library components that C++ programs may use to perform compile-time validation

of template parameters and perform function dispatch based on properties of types. The purpose of these
concepts is to establish a foundation for equational reasoning in programs.

2 The following subclauses describe core language concepts, comparison concepts, object concepts, and callable
concepts as summarized in Table 33.

Table 33 — Fundamental concepts library summary

Subclause Header(s)
22.3 Core language concepts <concepts>
22.4 Comparison concepts
22.5 Object concepts
22.6 Callable concepts

22.1.1 Equality Preservation [concepts.lib.general.equality]
[Editor’s note: Consider relocating this subclause into [description], somewhere near [structure.requirements].]

1 An expression is equality preserving if, given equal inputs, the expression results in equal outputs. The inputs
to an expression are the set of the expression’s operands. The output of an expression is the expression’s
result and all operands modified by the expression.

2 Not all input values must be valid for a given expression; e.g., for integers a and b, the expression a / b is
not well-defined when b is 0. This does not preclude the expression a / b being equality preserving. The
domain of an expression is the set of input values for which the expression is required to be well-defined.

3 Expressions required by this specification to be equality preserving are further required to be stable: two
evaluations of such an expression with the same input objects must have equal outputs absent any explicit
intervening modification of those input objects. [Note: This requirement allows generic code to reason about
the current values of objects based on knowledge of the prior values as observed via equality preserving
expressions. It effectively forbids spontaneous changes to an object, changes to an object from another
thread of execution, changes to an object as side effects of non-modifying expressions, and changes to an
object as side effects of modifying a distinct object if those changes could be observable to a library function
via an equality preserving expression that is required to be valid for that object. —end note]

4 Expressions declared in a requires-expression in this document are required to be equality preserving, except
for those annotated with the comment “not required to be equality preserving.” An expression so annotated
may be equality preserving, but is not required to be so.

5 An expression that may alter the value of one or more of its inputs in a manner observable to equality
preserving expressions is said to modify those inputs. This document uses a notational convention to specify
which expressions declared in a requires-expression modify which inputs: except where otherwise specified,
an expression operand that is a non-constant lvalue or rvalue may be modified. Operands that are constant
lvalues or rvalues must not be modified.

6 Where a requires-expression declares an expression that is non-modifying for some constant lvalue operand,
additional variations of that expression that accept a non-constant lvalue or (possibly constant) rvalue for
the given operand are also required except where such an expression variation is explicitly required with
differing semantics. These implicit expression variations must meet the semantic requirements of the declared
expression. The extent to which an implementation validates the syntax of the variations is unspecified.
[Example:

template <class T>
concept C =

requires(T a, T b, const T c, const T d) {
c == d; // #1
a = std::move(b); // #2
a = c; // #3

};

6

Expression #1 does not modify either of its operands, #2 modifies both of its operands, and #3 modifies
only its first operand a.
Expression #1 implicitly requires additional expression variations that meet the requirements for c == d
(including non-modification), as if the expressions

a == d; a == b; a == move(b); a == d;
c == a; c == move(a); c == move(d);
move(a) == d; move(a) == b; move(a) == move(b); move(a) == move(d);
move(c) == b; move(c) == move(b); move(c) == d; move(c) == move(d);

had been declared as well.
Expression #3 implicitly requires additional expression variations that meet the requirements for a = c
(including non-modification of the second operand), as if the expressions a = b and a = move(c) had been
declared. Expression #3 does not implicitly require an expression variation with a non-constant rvalue
second operand, since expression #2 already specifies exactly such an expression explicitly. —end example]
[Example: The following type T meets the explicitly stated syntactic requirements of concept C above but
does not meet the additional implicit requirements:

struct T {
bool operator==(const T&) const { return true; }
bool operator==(T&) = delete;

};

T fails to meet the implicit requirements of C, so C<T> is not satisfied. Since implementations are not required
to validate the syntax of implicit requirements, it is unspecified whether or not an implementation diagnoses
as ill-formed a program which requires C<T>. —end example]

22.2 Header <concepts> synopsis [concepts.lib.synopsis]
namespace std {

// 22.3, core language concepts:
// 22.3.2, Same:
template <class T, class U>
concept Same = see below ;

// 22.3.3, DerivedFrom:
template <class Derived, class Base>
concept DerivedFrom = see below ;

// 22.3.4, ConvertibleTo:
template <class From, class To>
concept ConvertibleTo = see below ;

// 22.3.5, CommonReference:
template <class T, class U>
concept CommonReference = see below ;

// 22.3.6, Common:
template <class T, class U>
concept Common = see below ;

// 22.3.7, Integral:
template <class T>
concept Integral = see below ;

// 22.3.8, SignedIntegral:
template <class T>
concept SignedIntegral = see below ;

// 22.3.9, UnsignedIntegral:
template <class T>
concept UnsignedIntegral = see below ;

7

// 22.3.10, Assignable:
template <class LHS, class RHS>
concept Assignable = see below ;

// 22.3.11, Swappable:
template <class T>
concept Swappable = see below ;

template <class T, class U>
concept SwappableWith = see below ;

// 22.3.12, Destructible:
template <class T>
concept Destructible = see below ;

// 22.3.13, Constructible:
template <class T, class... Args>
concept Constructible = see below ;

// 22.3.14, DefaultConstructible:
template <class T>
concept DefaultConstructible = see below ;

// 22.3.15, MoveConstructible:
template <class T>
concept MoveConstructible = see below ;

// 22.3.16, CopyConstructible:
template <class T>
concept CopyConstructible = see below ;

// 22.4, comparison concepts:
// 22.4.2, Boolean:
template <class B>
concept Boolean = see below ;

// 22.4.3, EqualityComparable:
template <class T, class U>
concept WeaklyEqualityComparableWith = see below ;

template <class T>
concept EqualityComparable = see below ;

template <class T, class U>
concept EqualityComparableWith = see below ;

// 22.4.4, StrictTotallyOrdered:
template <class T>
concept StrictTotallyOrdered = see below ;

template <class T, class U>
concept StrictTotallyOrderedWith = see below ;

// 22.5, object concepts:
// 22.5.1, Movable:
template <class T>
concept Movable = see below ;

// 22.5.2, Copyable:
template <class T>
concept Copyable = see below ;

// 22.5.3, Semiregular:
template <class T>

8

concept Semiregular = see below ;

// 22.5.4, Regular:
template <class T>
concept Regular = see below ;

// 22.6, callable concepts:
// 22.6.2, Invocable:
template <class F, class... Args>
concept Invocable = see below ;

// 22.6.3, RegularInvocable:
template <class F, class... Args>
concept RegularInvocable = see below ;

// 22.6.4, Predicate:
template <class F, class... Args>
concept Predicate = see below ;

// 22.6.5, Relation:
template <class R, class T, class U>
concept Relation = see below ;

// 22.6.6, StrictWeakOrder:
template <class R, class T, class U>
concept StrictWeakOrder = see below ;

}

22.3 Core language concepts [concepts.lib.corelang]
22.3.1 General [concepts.lib.corelang.general]

1 This section contains the definition of concepts corresponding to language features. These concepts express
relationships between types, type classifications, and fundamental type properties.

22.3.2 Concept Same [concepts.lib.corelang.same]
template <class T, class U>
concept Same = is_same_v<T, U>; // see below

1 There need not be any subsumption relationship between Same<T, U> and is_same_v<T, U>.
2 Remarks: For the purposes of constraint checking, Same<T, U> implies Same<U, T> Same<T, U> subsumes

Same<U, T> and vice versa.

22.3.3 Concept DerivedFrom [concepts.lib.corelang.derived]
template <class Derived, class Base>
concept DerivedFrom = is_base_of_v<Base, Derived> &&

is_convertible_v<remove_cv_t<Derived>*, remove_cv_t<Base>*>;
is_convertible_v<const volatile Derived*, const volatile Base*>; // see below

1 There need not be any subsumption relationship between DerivedFrom<Derived, Base> and ei-
ther is_base_of_v<Base, Derived> or is_convertible_v<remove_cv_t<Derived>*, remove_cv_-
t<Base>*>.

2 [Note: DerivedFrom<Derived, Base> is satisfied if and only if Derived is publicly and unambiguously
derived from Base, or Derived and Base are the same class type ignoring cv-qualifiers. —end note]

22.3.4 Concept ConvertibleTo [concepts.lib.corelang.convertibleto]
template <class From, class To>
concept ConvertibleTo = is_convertible_v<From, To> && // see below

requires(From (&f)()) { static_cast<To>(f()); };

1 Let test be the invented function:

9

To test(From (&f)()) {
return f();

}

and let f be a function with no arguments and return type From such that f() is equality preserving.
ConvertibleTo<From, To> is satisfied only if:
—(1.1) To is not an object or reference-to-object type, or static_cast<To>(f()) is equal to test(f).
—(1.2) From is not a reference-to-object type, or

—(1.2.1) If From is an rvalue reference to a non const-qualified type, the resulting state of the object
referenced by f() after either above expression is valid but unspecified (20.5.5.15).

—(1.2.2) Otherwise, the object referred to by f() is not modified by either above expression.
2 There need not be any subsumption relationship between ConvertibleTo<From, To> and is_convert-

ible_v<From, To>.

22.3.5 Concept CommonReference [concepts.lib.corelang.commonref]
1 For two types T and U, if common_reference_t<T, U> is well-formed and denotes a type C such that both

ConvertibleTo<T, C> and ConvertibleTo<U, C> are satisfied, then T and U share a common reference
type, C. [Note: C could be the same as T, or U, or it could be a different type. C may be a reference type. C
need not be unique.—end note]

template <class T, class U>
concept CommonReference =

Same<common_reference_t<T, U>, common_reference_t<U, T>> &&
ConvertibleTo<T, common_reference_t<T, U>> &&
ConvertibleTo<U, common_reference_t<T, U>>;

2 Let C be common_reference_t<T, U>. Let t be a function whose return type is T, and let u be a
function whose return type is U. CommonReference<T, U> is satisfied only if:

—(2.1) C(t()) equals C(t()) if and only if t() is an equality preserving expression (22.1.1).
—(2.2) C(u()) equals C(u()) if and only if u() is an equality preserving expression.

3 [Note: Users can customize the behavior of CommonReference by specializing the basic_common_-
reference class template (23.15.7.6).—end note]

22.3.6 Concept Common [concepts.lib.corelang.common]
1 If T and U can both be explicitly converted to some third type, C, then T and U share a common type, C.

[Note: C could be the same as T, or U, or it could be a different type. C may not be unique.—end note]

template <class T, class U>
concept Common =

Same<common_type_t<T, U>, common_type_t<U, T>> &&
ConvertibleTo<T, common_type_t<T, U>> &&
ConvertibleTo<U, common_type_t<T, U>> &&
CommonReference<

add_lvalue_reference_t<const T>,
add_lvalue_reference_t<const U>> &&

CommonReference<
add_lvalue_reference_t<common_type_t<T, U>>,
common_reference_t<

add_lvalue_reference_t<const T>,
add_lvalue_reference_t<const U>>>;

2 Let C be common_type_t<T, U>. Let t be a function whose return type is T, and let u be a function
whose return type is U. Common<T, U> is satisfied only if:

—(2.1) C(t()) equals C(t()) if and only if t() is an equality preserving expression (22.1.1).
—(2.2) C(u()) equals C(u()) if and only if u() is an equality preserving expression (22.1.1).

3 [Note: Users can customize the behavior of Common by specializing the common_type class tem-
plate (23.15.7.6).—end note]

10

22.3.7 Concept Integral [concepts.lib.corelang.integral]
template <class T>
concept Integral = is_integral_v<T>; // see below

1 There need not be any subsumption relationship between Integral<T> and is_integral_v<T>.

22.3.8 Concept SignedIntegral [concepts.lib.corelang.signedintegral]
template <class T>
concept SignedIntegral = Integral<T> && is_signed_v<T>; // see below

1 There need not be any subsumption relationship between SignedIntegral<T> and is_signed_v<T>.
2 [Note: SignedIntegral<T> may be satisfied even for types that are not signed integral types (6.7.1);

for example, char. —end note]

22.3.9 Concept UnsignedIntegral [concepts.lib.corelang.unsignedintegral]
template <class T>
concept UnsignedIntegral = Integral<T> && !SignedIntegral<T>;

1 [Note: UnsignedIntegral<T> may be satisfied even for types that are not unsigned integral types (6.7.1);
for example, char. —end note]

22.3.10 Concept Assignable [concepts.lib.corelang.assignable]
template <class LHS, class RHS>
concept Assignable =

is_lvalue_reference_v<LHS> && // see below
CommonReference<const remove_reference_t<LHS>&, const remove_reference_t<RHS>&> &&
requires(LHS lhs, RHS&& rhs) {

{ lhs = std::forward<RHS>(rhs) } -> Same<LHS>&&;
lhs = std::forward<RHS>(rhs);
requires Same<decltype(lhs = std::forward<RHS>(rhs)), LHS>;

};

1 Let lhs be an lvalue that refers to an object lcopy such that decltype((lhs)) is LHS, and rhs an
expression such that decltype((rhs)) is RHS. Let rcopy be a distinct object that is equal to rhs.
Assignable<LHS, RHS> is satisfied only if
—(1.1) addressof(lhs = rhs) == addressof(lcopy).
—(1.2) After evaluating lhs = rhs:

—(1.2.1) lhs is equal to rcopy, unless rhs is a non-const xvalue that refers to lcopy.
—(1.2.2) If rhs is a non-const xvalue, the resulting state of the object to which it refers is valid but

unspecified (20.5.5.15).
—(1.2.3) Otherwise, if rhs is a glvalue, the object to which it refers is not modified.

2 There need not be any subsumption relationship between Assignable<LHS, RHS> and is_lvalue_-
reference_v<LHS>.

3 [Note: Assignment need not be a total function (20.4.1.3); in particular, if assignment to an object x
can result in a modification of some other object y, then x = y is likely not in the domain of =. —end
note]

22.3.11 Concept Swappable [concepts.lib.corelang.swappable]
template <class T>
concept Swappable = requires(T& a, T& b) { ranges::swap(a, b); };
concept Swappable = is_swappable_v<T>; // see below

1 Let a1 and a2 denote distinct equal objects of type T, and let b1 and b2 similarly denote distinct equal
objects of type T. Swappable<T> is satisfied only if:

—(1.1) After evaluating either swap(a1, b1) or swap(b1, a1) in the context described below, a1 is
equal to b2 and b1 is equal to a2.

11

2 The context in which swap(a1, b1) or swap(b1, a1) are evaluated shall ensure that a binary non-
member function named "swap" is selected via overload resolution (16.3) on a candidate set that
includes:

—(2.1) the two swap function templates defined in <utility> (23.2) and
—(2.2) the lookup set produced by argument-dependent lookup (6.4.2).

3 There need be no subsumption relationship between Swappable<T> and is_swappable_v<T>.

template <class T, class U>
concept SwappableWith =

is_swappable_with_v<T, T> && is_swappable_with_v<U, U> && // see below
CommonReference<const remove_reference_t<T>&, const remove_reference_t<U>&> &&
is_swappable_with_v<T, U> && is_swappable_with_v<U, T>; // see below
requires(T&& t, U&& u) {

ranges::swap(std::forward<T>(t), std::forward<T>(t));
ranges::swap(std::forward<U>(u), std::forward<U>(u));
ranges::swap(std::forward<T>(t), std::forward<U>(u));
ranges::swap(std::forward<U>(u), std::forward<T>(t));

};

4 Let t1 and t2 denote distinct equal objects of type remove_cvref_t<T>, and Et be an expression
that denotes t1 such that decltype((Et)) is T. Let u1 and u2 similarly denote distinct equal objects
of type remove_cvref_t<U>, and Eu be an expression that denotes u1 such that decltype((Eu))
is U. Let C be common_reference_t<const remove_reference_t<T>&, const remove_reference_-
t<U>&>. SwappableWith<T, U> is satisfied only if:
—(4.1) After evaluating either swap(Et, Eu) or swap(Eu, Et) in the context described above, C(t1)

is equal to C(u2) and C(u1) is equal to C(t2).
5 The context in which swap(Et, Eu) or swap(Eu, Et) are evaluated shall ensure that a binary non-

member function named "swap" is selected via overload resolution (16.3) on a candidate set that
includes:

—(5.1) the two swap function templates defined in <utility> (23.2) and
—(5.2) the lookup set produced by argument-dependent lookup (6.4.2).

6 There need be no subsumption relationship between SwappableWith<T, U> and any specialization of
is_swappable_with_v.

7 This subclause provides definitions for swappable types and expressions. In these definitions, let t
denote an expression of type T, and let u denote an expression of type U.

8 An object t is swappable with an object u if and only if SwappableWith<T, U> is satisfied. Swappable-
With<T, U> is satisfied only if given distinct objects t2 equal to t and u2 equal to u, after evaluating
either ranges::swap(t, u) or ranges::swap(u, t), t2 is equal to u and u2 is equal to t.

9 An rvalue or lvalue t is swappable if and only if t is swappable with any rvalue or lvalue, respectively,
of type T.
[Example: User code can ensure that the evaluation of swap calls is performed in an appropriate
context under the various conditions as follows:

#include <utility>

// Requires: std::forward<T>(t) shall be swappable with std::forward<U>(u).
template <class T, class U>
void value_swap(T&& t, U&& u) {

ranges::swap(std::forward<T>(t), std::forward<U>(u)); // OK: uses “swappable with” conditions
// for rvalues and lvalues

}

// Requires: lvalues of T shall be swappable.
template <class T>
void lv_swap(T& t1, T& t2) {

ranges::swap(t1, t2); // OK: uses swappable conditions for
} // lvalues of type T

12

namespace N {
struct A { int m; };
struct Proxy { A* a; };
Proxy proxy(A& a) { return Proxy{ &a }; }

void swap(A& x, Proxy p) {
ranges::swap(x.m, p.a->m); // OK: uses context equivalent to swappable

// conditions for fundamental types
}
void swap(Proxy p, A& x) { swap(x, p); } // satisfy symmetry constraint

}

int main() {
int i = 1, j = 2;
lv_swap(i, j);
assert(i == 2 && j == 1);

N::A a1 = { 5 }, a2 = { -5 };
value_swap(a1, proxy(a2));
assert(a1.m == -5 && a2.m == 5);

}

—end example]

22.3.12 Concept Destructible [concepts.lib.corelang.destructible]
1 The Destructible concept specifies properties of all types, instances of which can be destroyed at the end

of their lifetime, or reference types.

template <class T>
concept Destructible = is_nothrow_destructible_v<T>; // see below

2 There need not be any subsumption relationship between Destructible<T> and is_nothrow_destruct-
ible_v<T>.

3 [Note: Unlike the STL1Destructible library concept in the C++ Standardrequirements (Table 27),
this concept forbids destructors that are noexcept(false)potentially throwing, even if non-throwing.
—end note]

22.3.13 Concept Constructible [concepts.lib.corelang.constructible]
1 The Constructible concept constrains the initialization of a variable of a given type with a particular set

of argument types.

template <class T, class... Args>
concept Constructible = Destructible<T> && is_constructible_v<T, Args...>; // see below

2 There need not be any subsumption relationship between Constructible<T, Args...> and is_-
constructible_v<T, Args...>.

22.3.14 Concept DefaultConstructible [concepts.lib.corelang.defaultconstructible]
template <class T>
concept DefaultConstructible = Constructible<T>;

22.3.15 Concept MoveConstructible [concepts.lib.corelang.moveconstructible]
template <class T>
concept MoveConstructible = Constructible<T, T> && ConvertibleTo<T, T>;

1 If T is an object type, then let rv be an rvalue of type T and u2 a distinct object of type T equal to
rv. MoveConstructible<T> is satisfied only if
—(1.1) After the definition T u = rv;, u is equal to u2.
—(1.2) T{rv} is equal to u2.
—(1.3) If T is not const, rv’s resulting state is valid but unspecified (20.5.5.15); otherwise, it is unchanged.

13

22.3.16 Concept CopyConstructible [concepts.lib.corelang.copyconstructible]
template <class T>
concept CopyConstructible = MoveConstructible<T> &&

Constructible<T, T&> && ConvertibleTo<T&, T> &&
Constructible<T, const T&> && ConvertibleTo<const T&, T> &&
Constructible<T, const T> && ConvertibleTo<const T, T>;

1 If T is an object type, then let v be an lvalue of type (possibly const) T or an rvalue of type const T.
CopyConstructible<T> is satisfied only if
—(1.1) After the definition T u = v;, u is equal to v.
—(1.2) T{v} is equal to v.

22.4 Comparison concepts [concepts.lib.compare]
22.4.1 General [concepts.lib.compare.general]

1 This section describes concepts that establish relationships and orderings on values of possibly differing
object types.

22.4.2 Concept Boolean [concepts.lib.compare.boolean]
1 The Boolean concept specifies the requirements on a type that is usable in Boolean contexts.

template <class B>
concept Boolean = Movable<remove_cvref_t> && // (see 22.5.1)

requires(const remove_reference_t& b1,
const remove_reference_t& b2, const bool a) {

{ b1 } -> ConvertibleTo<bool>&&;
requires ConvertibleTo<const remove_reference_t&, bool>;
{ !b1 } -> ConvertibleTo<bool>&&;
!b1; requires ConvertibleTo<decltype(!b1), bool>;
{ b1 && a } -> Same<bool>&&;
b1 && a; requires Same<decltype(b1 && a), bool>;
{ b1 || a } -> Same<bool>&&;
b1 || a; requires Same<decltype(b1 || a), bool>;
{ b1 && b2 } -> Same<bool>&&;
b1 && b2; requires Same<decltype(b1 && b2), bool>;
{ a && b2 } -> Same<bool>&&;
a && b2; requires Same<decltype(a && b2), bool>;
{ b1 || b2 } -> Same<bool>&&;
b1 || b2; requires Same<decltype(b1 || b2), bool>;
{ a || b2 } -> Same<bool>&&;
a || b2; requires Same<decltype(a || b2), bool>;
{ b1 == b2 } -> ConvertibleTo<bool>&&;
b1 == b2; requires ConvertibleTo<decltype(b1 == b2), bool>;
{ b1 == a } -> ConvertibleTo<bool>&&;
b1 == a; requires ConvertibleTo<decltype(b1 == a), bool>;
{ a == b2 } -> ConvertibleTo<bool>&&;
a == b2; requires ConvertibleTo<decltype(a == b2), bool>;
{ b1 != b2 } -> ConvertibleTo<bool>&&;
b1 != b2; requires ConvertibleTo<decltype(b1 != b2), bool>;
{ b1 != a } -> ConvertibleTo<bool>&&;
b1 != a; requires ConvertibleTo<decltype(b1 != a), bool>;
{ a != b2 } -> ConvertibleTo<bool>&&;
a != b2; requires ConvertibleTo<decltype(a != b2), bool>;

};

2 Given const lvalues b1 and b2 of type remove_reference_t, then Boolean is satisfied only if

—(2.1) bool(b1) == !bool(!b1).

—(2.2) (b1 && b2), (b1 && bool(b2)), and (bool(b1) && b2) are all equal to (bool(b1) && bool(b2)),
and have the same short-circuit evaluation.

—(2.3) (b1 || b2), (b1 || bool(b2)), and (bool(b1) || b2) are all equal to (bool(b1) || bool(b2)),
and have the same short-circuit evaluation.

14

—(2.4) bool(b1 == b2), bool(b1 == bool(b2)), and bool(bool(b1) == b2) are all equal to (bool(b1)
== bool(b2)).

—(2.5) bool(b1 != b2), bool(b1 != bool(b2)), and bool(bool(b1) != b2) are all equal to (bool(b1)
!= bool(b2)).

3 [Example: The types bool, true_type (23.15.2), and bitset<N>::reference (23.9.2) are Boolean types.
Pointers, smart pointers, and types with only explicit conversions to bool are not Boolean types.—end
example]

22.4.3 Concept EqualityComparable [concepts.lib.compare.equalitycomparable]
template <class T, class U>
concept __WeaklyEqualityComparableWith = // exposition only

requires(const remove_reference_t<T>& t,
const remove_reference_t<U>& u) {

{ t == u } -> Boolean&&;
t == u; requires Boolean<decltype(t == u)>;
{ t != u } -> Boolean&&;
t != u; requires Boolean<decltype(t != u)>;
{ u == t } -> Boolean&&;
u == t; requires Boolean<decltype(u == t)>;
{ u != t } -> Boolean&&;
u != t; requires Boolean<decltype(u != t)>;

};

1 Let t and u be const lvalues of types remove_reference_t<T> and remove_reference_t<U> respec-
tively. __WeaklyEqualityComparableWith<T, U> is satisfied only if:

—(1.1) t == u, u == t, t != u, and u != t have the same domain.
—(1.2) bool(u == t) == bool(t == u).
—(1.3) bool(t != u) == !bool(t == u).
—(1.4) bool(u != t) == bool(t != u).

template <class T>
concept EqualityComparable = __WeaklyEqualityComparableWith<T, T>;

2 Let a and b be objects of type T. EqualityComparable<T> is satisfied only if:
—(2.1) bool(a == b) if and only if a is equal to b (22.1.1).

3 [Note: The requirement that the expression a == b is equality preserving implies that == is reflexive,
transitive, and symmetric.—end note]

template <class T, class U>
concept EqualityComparableWith =

EqualityComparable<T> && EqualityComparable<U> &&
CommonReference<const remove_reference_t<T>&, const remove_reference_t<U>&> &&
EqualityComparable<common_reference_t<const remove_reference_t<T>&, const remove_reference_t<U>&>> &&
__WeaklyEqualityComparableWith<T, U>;

4 Let t be a const lvalue of type remove_reference_t<T>, u be a const lvalue of type remove_-
reference_t<U>, and C be:

common_reference_t<const remove_reference_t<T>&, const remove_reference_t<U>&>

EqualityComparableWith<T, U> is satisfied only if:
—(4.1) bool(t == u) == bool(C(t) == C(u)).

15

22.4.4 Concept StrictTotallyOrdered [concepts.lib.compare.stricttotallyordered]
template <class T>
concept StrictTotallyOrdered = EqualityComparable<T> &&

requires(const remove_reference_t<T>& a,
const remove_reference_t<T>& b) {

{ a < b } -> Boolean&&;
a < b; requires Boolean<decltype(a < b)>;
{ a > b } -> Boolean&&;
a > b; requires Boolean<decltype(a > b)>;
{ a <= b } -> Boolean&&;
a <= b; requires Boolean<decltype(a <= b)>;
{ a >= b } -> Boolean&&;
a >= b; requires Boolean<decltype(a >= b)>;

};

1 Let a, b, and c be const lvalues of type remove_reference_t<T>. StrictTotallyOrdered<T> is
satisfied only if
—(1.1) Exactly one of bool(a < b), bool(a > b), or bool(a == b) is true.
—(1.2) If bool(a < b) and bool(b < c), then bool(a < c).
—(1.3) bool(a > b) == bool(b < a).
—(1.4) bool(a <= b) == !bool(b < a).
—(1.5) bool(a >= b) == !bool(a < b).

template <class T, class U>
concept StrictTotallyOrderedWith = StrictTotallyOrdered<T> && StrictTotallyOrdered<U> &&

CommonReference<const remove_reference_t<T>&, const remove_reference_t<U>&> &&
StrictTotallyOrdered<common_reference_t<const remove_reference_t<T>&, const remove_reference_t<U>&>> &&
EqualityComparableWith<T, U> &&
requires(const remove_reference_t<T>& t,

const remove_reference_t<U>& u) {
{ t < u } -> Boolean&&;
t < u; requires Boolean<decltype(t < u)>;
{ t > u } -> Boolean&&;
t > u; requires Boolean<decltype(t > u)>;
{ t <= u } -> Boolean&&;
t <= u; requires Boolean<decltype(t <= u)>;
{ t >= u } -> Boolean&&;
t >= u; requires Boolean<decltype(t >= u)>;
{ u < t } -> Boolean&&;
u < t; requires Boolean<decltype(u < t)>;
{ u > t } -> Boolean&&;
u > t; requires Boolean<decltype(u > t)>;
{ u <= t } -> Boolean&&;
u <= t; requires Boolean<decltype(u <= t)>;
{ u >= t } -> Boolean&&;
u >= t; requires Boolean<decltype(u >= t)>;

};

2 Let t be a const lvalue of type remove_reference_t<T>, u be a const lvalue of type remove_-
reference_t<U>, and C be:

common_reference_t<const remove_reference_t<T>&, const remove_reference_t<U>&>

StrictTotallyOrderedWith<T, U> is satisfied only if
—(2.1) bool(t < u) == bool(C(t) < C(u)).
—(2.2) bool(t > u) == bool(C(t) > C(u)).
—(2.3) bool(t <= u) == bool(C(t) <= C(u)).
—(2.4) bool(t >= u) == bool(C(t) >= C(u)).
—(2.5) bool(u < t) == bool(C(u) < C(t)).
—(2.6) bool(u > t) == bool(C(u) > C(t)).
—(2.7) bool(u <= t) == bool(C(u) <= C(t)).
—(2.8) bool(u >= t) == bool(C(u) >= C(t)).

16

22.5 Object concepts [concepts.lib.object]
1 This section describes concepts that specify the basis of the value-oriented programming style on which the

library is based.

22.5.1 Concept Movable [concepts.lib.object.movable]
template <class T>
concept Movable = is_object_v<T> && MoveConstructible<T> && Assignable<T&, T> && Swappable<T>;

1 There need not be any subsumption relationship between Movable<T> and is_object_v<T>.

22.5.2 Concept Copyable [concepts.lib.object.copyable]
template <class T>
concept Copyable = CopyConstructible<T> && Movable<T> && Assignable<T&, const T&>;

22.5.3 Concept Semiregular [concepts.lib.object.semiregular]
template <class T>
concept Semiregular = Copyable<T> && DefaultConstructible<T>;

1 [Note: The Semiregular concept is satisfied by types that behave similarly to built-in types like int,
except that they may not be comparable with ==.—end note]

22.5.4 Concept Regular [concepts.lib.object.regular]
template <class T>
concept Regular = Semiregular<T> && EqualityComparable<T>;

1 [Note: The Regular concept is satisfied by types that behave similarly to built-in types like int and
that are comparable with ==.—end note]

22.6 Callable concepts [concepts.lib.callable]
22.6.1 General [concepts.lib.callable.general]

1 The concepts in this section describe the requirements on function objects (23.14) and their arguments.

22.6.2 Concept Invocable [concepts.lib.callable.invocable]
1 The Invocable concept specifies a relationship between a callable type (23.14.2) F and a set of argument

types Args... which can be evaluated by the library function invoke (23.14.4).

template <class F, class... Args>
concept Invocable = requires(F&& f, Args&&... args) {

invoke(std::forward<F>(f), std::forward<Args>(args)...); // not required to be equality preserving
};

2 [Note: Since the invoke function call expression is not required to be equality-preserving (22.1.1), a
function that generates random numbers may satisfy Invocable.—end note]

22.6.3 Concept RegularInvocable [concepts.lib.callable.regularinvocable]
template <class F, class... Args>
concept RegularInvocable = Invocable<F, Args...>;

1 The invoke function call expression shall be equality-preserving and shall not modify the function
object or the arguments (22.1.1). [Note: This requirement supersedes the annotation in the definition
of Invocable. —end note]

2 [Note: A random number generator does not satisfy RegularInvocable.—end note]
3 [Note: The distinction between Invocable and RegularInvocable is purely semantic.—end note]

22.6.4 Concept Predicate [concepts.lib.callable.predicate]
template <class F, class... Args>
concept Predicate = RegularInvocable<F, Args...> &&

Boolean<result_of_t<F&&(Args&&...)>>;
Boolean<invoke_result_t<F, Args...>>;

17

22.6.5 Concept Relation [concepts.lib.callable.relation]
template <class R, class T, class U>
concept Relation = Predicate<R, T, T> && Predicate<R, U, U> &&

CommonReference<const remove_reference_t<T>&, const remove_reference_t<U>&> &&
Predicate<R,

common_reference_t<const remove_reference_t<T>&, const remove_reference_t<U>&>,
common_reference_t<const remove_reference_t<T>&, const remove_reference_t<U>&>> &&

Predicate<R, T, U> && Predicate<R, U, T>;

1 Let r be an expression such that decltype((r)) is R, t be an expression such that decltype((t)) is
T, u be an expression such that decltype((u)) is U, and C be common_reference_t<const remove_-
reference_t<T>&, const remove_reference_t<U>&>. Relation<R, T, U> is satisfied only if
—(1.1) bool(r(t, u)) == bool(r(C(t), C(u))).

—(1.2) bool(r(u, t)) == bool(r(C(u), C(t))).

22.6.6 Concept StrictWeakOrder [concepts.lib.callable.strictweakorder]
template <class R, class T, class U>
concept StrictWeakOrder = Relation<R, T, U>;

1 A Relation satisfies StrictWeakOrder only if it imposes a strict weak ordering on its arguments.
2 The term strict refers to the requirement of an irreflexive relation (!comp(x, x) for all x), and the

term weak to requirements that are not as strong as those for a total ordering, but stronger than
those for a partial ordering. If we define equiv(a, b) as !comp(a, b) && !comp(b, a), then the
requirements are that comp and equiv both be transitive relations:
—(2.1) comp(a, b) && comp(b, c) implies comp(a, c)

—(2.2) equiv(a, b) && equiv(b, c) implies equiv(a, c) [Note: Under these conditions, it can be
shown that
—(2.2.1) equiv is an equivalence relation
—(2.2.2) comp induces a well-defined relation on the equivalence classes determined by equiv
—(2.2.3) The induced relation is a strict total ordering. —end note]

23 General utilities library [utilities]
23.2 Utility components [utility]
23.14 Function objects [function.objects]
[Editor’s note: Add a new declaration to the <functional> synopsis:]

23.14.1 Header <functional> synopsis [functional.syn]
[...]
template<> struct bit_xor<void>;
template<> struct bit_not<void>;

// 23.14.10, identity:
struct identity;

// 23.14.10, function template not_fn
template<class F> unspecified not_fn(F&& f);

[...]

[Editor’s note: Add a new subclause before [func.not_fn]:]

23.14.10 Class identity [func.identity]
struct identity {

template <class T>
constexpr T&& operator()(T&& t) const noexcept;

18

using is_transparent = unspecified ;
};

template <class T>
constexpr T&& operator()(T&& t) const noexcept;

1 Returns: Effects: Equivalent to: return std::forward<T>(t);

23.15 Metaprogramming and type traits [meta]
23.15.2 Header <type_traits> synopsis [meta.type.synop]
[Editor’s note: Add new declarations to the <type_traits> synopsis:]

[...]
template <class... T> struct common_type;
template <class T, class U, template <class> class TQual, template <class> class UQual>

struct basic_common_reference { };
template <class... T> struct common_reference;
template<class T> struct underlying_type;
[...]
template <class... T>

using common_type_t = typename common_type<T...>::type;
template <class... T>

using common_reference_t = typename common_reference<T...>::type;
template<class T>

using underlying_type_t = typename underlying_type<T>::type;
[...]

23.15.7.6 Other transformations [meta.trans.other]
[Editor’s note: Add new traits to Table 50]

Table 50 — Other transformations

Template Comments
... ...
template<class... T>
struct common_type;

Unless this trait is specialized (as specified in Note B, below), the
member type shall be defined or omitted as specified in Note A, below.
If it is omitted, there shall be no member type. Each type in the
parameter pack T shall be complete, cv void, or an array of unknown
bound.

template <class, class,
template <class> class,
template <class> class>

struct
basic_common_reference;

The primary template shall have no member typedef type. A program
may specialize this trait if at least one template parameter in the
specialization depends on a user-defined type. In such a specialization, a
member typedef type may be defined or omitted. If it is omitted, there
shall be no member type. [Note: Such specializations may be used to
influence the result of common_reference.—end note]

template <class... T>
struct common_reference;

The member typedef type shall be defined or omitted as specified below.
If it is omitted, there shall be no member type. Each type in the
parameter pack T shall be complete or (possibly cv) void.

... ...

[Editor’s note: Insert this new paragraph before paragraph 3:]
3 Let CREF(A) be add_lvalue_reference_t<const remove_reference_t<A>>. Let XREF(A) denote a unary

template T such that T<remove_cvref_t<A>> denotes the same type as A T<U> denotes the same type as U
with the addition of A’s cv and reference qualifiers, for a type U such that is_same_v<U, remove_cvref_t<U>>
is true. Let COPYCV(FROM, TO) be an alias for type TO with the addition of FROM’s top-level cv-qualifiers.
[Example: COPYCV(const int, volatile short) is an alias for const volatile short. —end example]
Let RREF_RES(Z) be remove_reference_t<Z>&& if Z is a reference type or Z otherwise. Let COND_RES(X,

19

Y) be decltype(declval<bool>() ? declval<X(&)()>()() : declval<Y(&)()>()()). Given types A
and B, let X be remove_reference_t<A>, let Y be remove_reference_t, and let COMMON_REF(A, B) be:

—(3.1) If A and B are both lvalue reference types, COMMON_REF(A, B) is COND_RES(COPYCV(X, Y) &, COPYCV(Y,
X) &) if that type exists and is a reference type.

—(3.2) Otherwise, let C be RREF_RES(COMMON_REF(X&, Y&)) remove_reference_t<COMMON_REF(X&, Y&)>&&.
If A and B are both rvalue reference types, C is well-formed, and is_convertible_v<A, C> && is_-
convertible_v<B, C> is true, then COMMON_REF(A, B) is C.

—(3.3) Otherwise, let D be COMMON_REF(const X&, Y&). If A is an rvalue reference and B is an lvalue reference
and D is well-formed and is_convertible_v<A, D> is true, then COMMON_REF(A, B) is D.

—(3.4) Otherwise, if A is an lvalue reference and B is an rvalue reference, then COMMON_REF(A, B) is COMMON_-
REF(B, A).

—(3.5) Otherwise, COMMON_REF(A, B) is decay_t<COND_RES(CREF(A), CREF(B))> ill-formed.

If any of the types computed above are ill-formed, then COMMON_REF(A, B) is ill-formed.
[Editor’s note: Modify the following "Note A" paragraph as follows:]

4 Note A: For the common_type trait applied to a parameter pack T of types, the member type shall be either
defined or not present as follows:

—(4.1) If sizeof...(T) is zero, there shall be no member type.

—(4.2) If sizeof...(T) is one, let T0 denote the sole type constituting the pack T. The member typedef-
name type shall denote the same type, if any, as common_type_t<T0, T0>; otherwise there shall be
no member type.

—(4.3) If sizeof...(T) is two, let the first and second types constituting T be denoted by T1 and T2,
respectively, and let D1 and D2 denote the same types as decay_t<T1> and decay_t<T2>, respectively.

—(4.3.1) If is_same_v<T1, D1> is false or is_same_v<T2, D2> is false, let C denote the same type, if
any, as common_type_t<D1, D2>.

—(4.3.2) [Note: None of the following will apply if there is a specialization common_type<D1, D2>. —end note]
—(4.3.3) Otherwise, let C denote the same type, if any, as if

decay_t<decltype(false ? declval<D1>() : declval<D2>())>

[Note: This will not apply if there is a specialization common_type<D1, D2>. —end note]
denotes a valid type, let C denote its type.

—(4.3.4) Otherwise, let C denote the same type as decay_t<COND_RES(CREF(D1), CREF(D2))>, if any.

In either case, the member typedef-name type shall denote the same type, if any, as C. Otherwise,
there shall be no member type.

—(4.4) If sizeof...(T) is greater than two, let T1, T2, and R, respectively, denote the first, second, and
(pack of) remaining types constituting T. Let C denote the same type, if any, as common_type_t<T1,
T2>. If there is such a type C, the member typedef-name type shall denote the same type, if any, as
common_type_t<C, R...>. Otherwise, there shall be no member type.

[Editor’s note: Add new paragraphs following the paragaph that begins "Note B":]
5 For the common_reference trait applied to a parameter pack T of types, the member type shall be either

defined or not present as follows:

—(5.1) If sizeof...(T) is zero, there shall be no member type.

—(5.2) Otherwise, if sizeof...(T) is one, let T0 denote the sole type in the pack T. The member typedef
type shall denote the same type as T0.

—(5.3) Otherwise, if sizeof...(T) is two, let T1 and T2 denote the two types in the pack T. Then

20

—(5.3.1) If T1 and T2 are reference types and COMMON_REF(T1, T2) is well-formed and denotes a reference
type then the member typedef type denotes that type.

—(5.3.2) Otherwise, if basic_common_reference<remove_cvref_t<T1>, remove_cvref_t<T2>, XREF(T1),
XREF(T2)>::type is well-formed, then the member typedef type denotes that type.

—(5.3.3) Otherwise, if COND_RES(T1, T2) is well-formed, then the member typedef type denotes that
type.

—(5.3.4) Otherwise, if common_type_t<T1, T2> is well-formed, then the member typedef type denotes
that type.

—(5.3.5) Otherwise, there shall be no member type.

—(5.4) Otherwise, if sizeof...(T) is greater than two, let T1, T2, and Rest, respectively, denote the first,
second, and (pack of) remaining types comprising T. Let C be the type common_reference_t<T1, T2>.
Then:

—(5.4.1) If there is such a type C, the member typedef type shall denote the same type, if any, as common_-
reference_t<C, Rest...>.

—(5.4.2) Otherwise, there shall be no member type.

6 Notwithstanding the provisions of 23.15.2, and pursuant to 20.5.4.2.1, a program may specialize basic_-
common_reference<T, U, TQual, UQual> for types T and U such that is_same_v<T, decay_t<T>> and
is_same_v<U, decay_t<U>> are each true. [Note: Such specializations are needed when only explicit con-
versions are desired between the template arguments. —end note] Such a specialization need not have a
member named type, but if it does, that member shall be a typedef-name for an accessible and unambiguous
type C to which each of the types TQual<T> and UQual<U> is convertible. Moreover, basic_common_-
reference<T, U, TQual, UQual>::type shall denote the same type, if any, as does basic_common_-
reference<U, T, UQual, TQual>::type. A program may not specialize basic_common_reference on
the third or fourth parameters, TQual or UQual. No diagnostic is required for a violation of these rules.

29 Numerics library [numerics]
29.6 Random number generation [rand]
[Editor’s note: Relocate "Header /tcode<random> synopsis" [rand.synopsis] before 29.6.1 "Requirements"
[rand.req]]

29.6.1 Header <random> synopsis [rand.synopsis]
[Editor’s note: Modify the <random> synopsis as follows:]

#include <initializer_list>

namespace std {
// 29.6.1.1, concept UniformRandomBitGenerator
template <class G>
concept UniformRandomNumberBitGenerator = see below ;

// 29.6.3.1, class template linear_congruential_engine
template<class UIntType, UIntType a, UIntType c, UIntType m>

class linear_congruential_engine;

[...]

29.6.1.1 Uniform random bit generator requirements [rand.req.urng]
[Editor’s note: Add new paragraphs after the existing content:]

template <class G>
concept UniformRandomNumberBitGenerator =

Invocable<G&> && UnsignedIntegral<result_of_t<G&()>invoke_result_t<G&>> &&
requires {

21

{ G::min() } -> Same<result_of_t<G&()>>&&;
G::min(); requires Same<decltype(G::min()), invoke_result_t<G&>>;
{ G::max() } -> Same<result_of_t<G&()>>&&;
G::max(); requires Same<decltype(G::max()), invoke_result_t<G&>>;

};

4 Let g be an object of type G. UniformRandomNumberBitGenerator<G> is satisfied only if

—(4.1) Both G::min() and G::max() are constant expressions (8.6).

—(4.2) G::min() < G::max().

—(4.3) G::min() <= g().

—(4.4) g() <= G::max().

—(4.5) g() has amortized constant complexity.

22

Index
expression-equivalent, 3

requirements, 4
uniform random bit generator, 21

swappable, 12
swappable with, 12

uniform random bit generator
requirements, 21

23

Index of library names
Assignable, 11

Boolean, 14

Common, 10
common_type, 19
CommonReference, 10
<concepts>, 7
Constructible, 13
ConvertibleTo, 9
Copyable, 17
CopyConstructible, 14

DefaultConstructible, 13
DerivedFrom, 9
Destructible, 13

EqualityComparable, 15
EqualityComparableWith, 15

identity, 18
Integral, 11
Invocable, 17

Movable, 17
MoveConstructible, 13

Predicate, 17

Regular, 17
RegularInvocable, 17
Relation, 18

Same, 9
Semiregular, 17
SignedIntegral, 11
StrictTotallyOrdered, 16
Swappable, 11
SwappableWith, 12

UnsignedIntegral, 11

WeaklyEqualityComparableWith, 15

24

	1 Introduction
	1.1 Revision History
	1.1.1 Revision 1

	1.2 Renaming "requirements tables"
	1.3 Style of presentation

	20 Library introduction
	20.1 General
	20.3 Definitions
	20.4 Method of description (Informative)
	20.4.1 Structure of each clause
	20.4.1.2 Summary
	20.4.1.3 Requirements

	20.4.2 Other conventions
	20.4.2.1 Type descriptions
	20.4.2.1.6 Customization Point Object types

	20.5 Library-wide requirements
	20.5.1.2 Headers
	20.5.4 Constraints on programs
	20.5.4.8 Other functions
	20.5.4.12 Semantic requirements

	22 Concepts library
	22.1 General
	22.1.1 Equality Preservation

	22.2 Header <concepts> synopsis
	22.3 Core language concepts
	22.3.1 General
	22.3.2 Concept Same
	22.3.3 Concept DerivedFrom
	22.3.4 Concept ConvertibleTo
	22.3.5 Concept CommonReference
	22.3.6 Concept Common
	22.3.7 Concept Integral
	22.3.8 Concept SignedIntegral
	22.3.9 Concept UnsignedIntegral
	22.3.10 Concept Assignable
	22.3.11 Concept Swappable
	22.3.12 Concept Destructible
	22.3.13 Concept Constructible
	22.3.14 Concept DefaultConstructible
	22.3.15 Concept MoveConstructible
	22.3.16 Concept CopyConstructible

	22.4 Comparison concepts
	22.4.1 General
	22.4.2 Concept Boolean
	22.4.3 Concept EqualityComparable
	22.4.4 Concept StrictTotallyOrdered

	22.5 Object concepts
	22.5.1 Concept Movable
	22.5.2 Concept Copyable
	22.5.3 Concept Semiregular
	22.5.4 Concept Regular

	22.6 Callable concepts
	22.6.1 General
	22.6.2 Concept Invocable
	22.6.3 Concept RegularInvocable
	22.6.4 Concept Predicate
	22.6.5 Concept Relation
	22.6.6 Concept StrictWeakOrder

	23 General utilities library
	23.2 Utility components
	23.14 Function objects
	23.14.1 Header <functional> synopsis
	23.14.10 Class identity

	23.15 Metaprogramming and type traits
	23.15.2 Header <type_traits> synopsis
	23.15.7.6 Other transformations

	29 Numerics library
	29.6 Random number generation
	29.6.1 Header <random> synopsis
	29.6.1.1 Uniform random bit generator requirements

	Index
	Index of library names

