
Let strong_order Truly Be a Customization Point!

Gašper Ažman

Document #: P0891R0
Date: 2018-02-10
Audience: Library Working Group
Reply-to: Gašper Ažman, gasper.azman@gmail.com

Contents
1 Abstract 1

2 Status of this paper 1

3 Problem Description 2

4 Current Status 2

5 Code Example 2

6 Proposal 4
6.1 Make strong_order An Explicit Customization Point . . . . . . . . . . . . . . . . . . . 4
6.2 Remove the iec559 Exception (point 1.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
6.3 Fix The Rules for Synthesis of Weaker Algorithms . . . . . . . . . . . . . . . . . . . . . . 4
6.4 Designate The Rest of the Algorithms to be Customization Points Too . . . . . . . . . . . 5
6.5 Alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

7 Exposition: The Natural and Default Orderings 5
7.1 On Compatibility Between the Natural and Default Orderings . . . . . . . . . . . . . . . . 5

8 Acknowledgments 6

1 Abstract

This paper is a defect-report to a library extension that has been voted into the working draft as part
of P0768R1[1].

In communication with Herb Sutter and Walter Brown, it was made clear that all 5 algorithms mentioned
in this paper are meant to be customization points.

The first part of this paper is a defect report. The sencond part of the paper is an elucidation of what
the semantics of the strong_order customization point should be.

2 Status of this paper

The wording for the entire fix is not provided in this paper, and shall be written if this paper receives
support and further guidance on direction of how we want to handle customization points.

1



It then highlights one problem with the current wording that makes it unsuitable for that purpose, and
highlights also a slight inelegance with the current integration of iec559 types.

3 Problem Description

The current C++ standard does not have an explicitly designated customization point for providing a
default ordering1. Elements of Programming uses less<T>::operator() for this purpose, as does
the global order for pointers; but in the wake of operator <=>, less<T> is missing features, such as
computing equality without calling it twice. It has also failed to get adoption for this purpose throughout
the years, perhaps exactly due to the missing features.

The wording of point 1.1 of the strong_order algorithm suggests that strong_order is finally this
missing customization point for specifying a default ordering for types whose natural ordering is not
strong and total, since it does exactly that for the iec559 types.

The issue is that the rest of the points make this function rather unsuitable for use as a customization
point, since the language explicitly makes it not SFINAE-friendly. In the event that it cannot be
synthesized, it is marked as deleted, and not as "shall not participate in overload resolution".

4 Current Status

For reference, the current specification for the strong_order algorithm looks like this:

template<class T>
constexpr strong_ordering strong_order(const T& a, const T& b);

1. Effects: Compares two values and produces a result of type strong_ordering:

1.1. If numeric_limits<T>::is_iec559 is true, returns a result of type strong_ordering
that is consistent with the totalOrder operation as specified in ISO/IEC/IEEE 60559.

1.2. Otherwise, returns a <=> b if that expression is well-formed and convertible to strong_ordering.

1.3. Otherwise, if the expression a <=> b is well-formed, then the function shall be defined as
deleted.

1.4. Otherwise, if the expressions a == b and a < b are each well-formed and convertible to
bool,
returns strong_ordering::equal when a == b is true,
otherwise returns strong_ordering::less when a < b is true,
and otherwise returns strong_ordering::greater.

1.5. Otherwise, the function shall be defined as deleted.

5 Code Example

Let me illustrate on a trivial example. Say we have a template struct representing the gaussian integers,
with a "natural order"2 defined by the manhattan distance from 0 + 0i. This struct still defines a
strong_order to model Regular3.

1 namespace user {
2 template <typename T>
3 struct gaussian {

1See the Exposition section for the definitions and discussion of orderings
2There is no natural order on gaussian integers, but humor this example, please.
3The Elements of Programming concept, not the ISO C++ Regular, which is weaker.

2



4 static_assert(std::is_integral_v<T>);
5 T re;
6 T im;
7

8 constexpr std::strong_equality operator==(gassian const& other) const {
9 return re == other.re && im == other.im;

10 }
11 constexpr std::weak_ordering operator<=>(gaussian const& other) const {
12 return (*this == other) ? std::weak_ordering::equal
13 : (abs(*this) == abs(other)) ? std::weak_ordering::equivalent
14 : abs(*this) <=> abs(other);
15 }
16 friend constexpr T abs(gaussian const&) {
17 using std::abs;
18 return abs(re) + abs(im);
19 }
20

21 friend constexpr std::strong_ordering strong_order(gaussian const& x,
22 gaussian const& y) {
23 // compare lexicographically
24 return std::tie(x.re, x.im) <=> std::tie(y.re, y.im);
25 }
26 };
27 }

Consider a transparent ordering operator for map:

1 struct strong_less
2 template <typename T, typename U>
3 bool operator()(T const& x, U const& y) {
4 using std::strong_order; // use ADL
5 return strong_order(x, y) < 0;
6 }
7 using is_transparent = std::true_type;
8 };

Also say we had a type with an implicit conversion to our gaussian:

1 template <typename T>
2 struct lazy {
3 std::function<T()> make;
4 operator T() const { return make(); }
5 };

This function now fails to compile, because the chosen strong_order is deleted.

1 bool exists(lazy<gaussian<int>> const& x,
2 std::set<gaussian<int>, strong_less> const& in) {
3 /* imagine this being a template in both parameters - it’s pretty normal */
4 return in.count(x);
5 }

The std-provided strong_order is deleted because it cannot be synthesized from gaussian’s operator
<=>. The reason it is chosen over the friend function, however, is because the standard template matches
better than the friend which would require an implicit conversion.

If the std-provided strong_order did not participate in overload resolution, however, this example
would work just fine.

3



6 Proposal

6.1 Make strong_order An Explicit Customization Point

Depending on the final direction of the wording on customization points (either the current one, with an
emphasis on shall not participate in overload resolution, or the one outlined in P0551R0[2], the wording
shall differ here.

I am asking LWG for guidance on this subject.

6.2 Remove the iec559 Exception (point 1.1)

Since this paper adds explicit support for this customization point, the exception can now be implemented
using whichever mechanism for customization points is chosen, and this special case moved to that part
of the standard. For instance, a "more specialized" template based on a requires clause and the
numeric_limts<T>::is_iec559 trait can be added to namespace std.

The minimal fix for the current situation would be:

Change point 1.3 to read: Otherwise, if the expression a <=> b is well-formed,4 the function does not
participate in overload resolution.

After the list, add a Note:

If operator <=> provides an order weaker than strong, this function allows the provision of a default
strong order for a user-defined type. In that case, strong_order should define a strict, total ordering.

6.3 Fix The Rules for Synthesis of Weaker Algorithms

The algorithms section contains a few other algorithms:5

• weak_order(const T& a, const T& b)

• partial_order(const T& a, const T& b)

• strong_equal(const T& a, const T& b)

• weak_equal(const T& a, const T& b)

• partial_equal(const T& a, const T& b)

Intuitively, one would expect that if strong_order is available, then so are strong_equal, weak_order
and partial_order (with weak_equal and partial_equal being consequences of those). The
current situation seems to provide for that by accident6, with no explicit reference to this fact.

However, if strong_order is the customization point for a default order that may be stronger than
the order on operator <=>, then the above expectation may no longer hold for such types (you might
have strong_order but not weak_order, for instance).

The fix-up for each of the sections describing the above primitives would be to insert, after point x.1
(which describes the algorithm in terms of <=>) the automatic fallback to a call to strong_order, if
it is resolvable through an unqualified call (thus enabling argument-dependent lookup).

4Note: point 1.2 already takes care of the case where <=> provides a strong (and thus valid default) order.
5Not to be confused with the types of their results; those end in -ing: strong_ordering, weak_ordering etc.
6the rules for those algorithms are identical but for the iec559 exception in strong_order; since floating-point types

possess operator< and operator==, they enable the synthesis of all those algorithms.

4



6.4 Designate The Rest of the Algorithms to be Customization Points Too

They were intended to be customization points. There should be a Remark making that clear in every
section. However, for the rest of the algorithms, their specific intended use is not quite as clear as the
usecase for strong_order.

6.5 Alternative

If the purpose of strong_order is not to provide a default ordering for types, the iec559 exception
should be removed from the wording, and a different customization point (perhaps called total_order)
added for the express purpose of providing an arbitrary total order on the entire domain of a type.

7 Exposition: The Natural and Default Orderings

Obviously, there are many reasons for sorting. However, this paper is chiefly concerned with the division
between the natural ordering and the default total ordering as required for Regular types by Stepanov
and McJones in their seminal work Elements of Programming ([3], page 62, section 4.4).

The natural ordering is the ordering that makes semantic sense for a type. This is the ordering
that operator <=> and its library extensions are tailor-made for: not every type is ordered (or even
equality-comparable), and when a type supports an ordering, it might be strong, partial, or weak.

We use these orderings when we need them to make sense - heaps, scheduling tasks by topological sorts,
various displays for users, etc. Not all value types have a natural ordering, because not all types are
ordered. The gaussian integers are one such type.

The default ordering7 is the strongest ordering that a type admits. Its equality is defined by value-
substitutability, and unequal elements must be ordered; it is always strong and total, and might not
make semantic sense.

According to Elements of Programming, every Regular type should provide a default ordering.

A type with a default ordering is far more useful than one without; ordering enables the use of tree-based
containers (i.e. map, set), and algorithms based on sorted data (unique, the various set algorithms,
and the various versions of binary search) – and this is just the tip of the iceberg. The only requirement
for the above is having a total strong ordering - what the ordering means is utterly irrelevant.

The lexicographic ordering of the gaussian integers is a good example of a default ordering.

Another excellent example is float – its various NaNs and infinities are not ordered, which is why its
natural ordering is not suitable as a default ordering. However, iec559 defines a total strong ordering for
those values, thus enabling the uses outlined above.

7.1 On Compatibility Between the Natural and Default Orderings

Elements of Programming specifies that for types where the natural and default orderings differ, the
default ordering should be compatible with the natural one: that is, if a and b are comparable and
compare unequal under <=>, the default order produces the same result (less or greater).

However, requiring this in the language of the standard library as a mandatory semantic constraint seems
like a bad idea.

For instance, if one takes the gaussian integers ordered by the manhattan-distance to zero (sum of
absolute values of the two components), the compatible total order (a lexicographic ordering of every
equivalence class) is far slower to compute than the simple lexicographic one.

7The name comes from Elements of Programming

5



Furthermore, if needed, a compatible total order can always be achieved on the fly by comparing with
the natural order first - if the result is less or greater, keep the result - otherwise, fall back on the
default ordering.

8 Acknowledgments

I would like to thank

Roger Orr for bringing this to my attention;

Thomas Köppe for his valuable comments, review, and most of all some extremely clear and laconic
wording;

Sam Finch for thoroughly breaking my examples, some example code, great substantive comments, and
pointing out that the current definition actually breaks types that define a partially-ordered set of
comparison operators;

Richard Smith for further fixing my example in light of Concepts, and example code.

Herb Sutter and Walter Brown for providing guidance on customization points.

Louis Dionne for great comments on the structure of the paper and how to bring the focus where it
needs to be.

Thanks!

References

[1] Walter E. Brown. “Library Support for the Spaceship (Comparison) Operator”. In: Post-Albuquerque
Mailing (2017). url: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/
p0768r1.pdf.

[2] Walter E. Brown. “Thou Shalt Not Specialize std Function Templates”. In: (2017). url: http:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0551r0.pdf.

[3] Alexander Stepanov and Paul McJones. Elements of Programming. 1st. Addison-Wesley Profes-
sional, 2009. isbn: 032163537X, 9780321635372.

6

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0768r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0768r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0551r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0551r0.pdf

	Abstract
	Status of this paper
	Problem Description
	Current Status
	Code Example
	Proposal
	Make strong_order An Explicit Customization Point
	Remove the iec559 Exception (point 1.1)
	Fix The Rules for Synthesis of Weaker Algorithms
	Designate The Rest of the Algorithms to be Customization Points Too
	Alternative

	Exposition: The Natural and Default Orderings
	On Compatibility Between the Natural and Default Orderings

	Acknowledgments

