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Abstract 
We investigated some of our SIMD applications and have some feedback on P0214R9. 
 
The presented change resolves an NB comment on the PDTS 

Revision History 

P0820R3 to P0820R4 
● Removed changes for simd_abi::deduce since it's already covered by P0964. 
● Remove changes to the simd_cast return types (to be reconsidered later). 
● Move concat and split related changes to P1118. 
● Rebase the mismatched wording onto the Parallelism v2 TS. 

P0820R2 to P0820R3 
● Rebase onto P0214R9. 
● Adapt to P0964R1. 
● Changed wording for alias scalar and fixed_size. 

P0820R1 to P0820R2 
● Rebased onto P0214R7. 
● Extended static_simd_cast and simd_cast to use rebind_abi_t. 
● Change simd_abi::scalar to an alias. 

P0820R0 to P0820R1 
● Rebased onto P0214R6. 
● Added reference implementation link. 
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● For concat() and split(), instead of making them return simd types with implementation 
defined ABIs, make them return rebind_abi_t<...>, which is an extension and 
replacement of original abi_for_size_t. 

● Removed the default value of ̀n` in split_by(). 
● Removed discussion on relational operators. Opened an issue for it 

(https://issues.isocpp.org/show_bug.cgi?id=401). 
● Proposed change to fixed_size from a struct to an alias, as well as guaranteeing the 

alias to have deduced-context. 

simd_abi::scalar and fixed_size<N> are not an aliases 
One possible implementation of ABI is to create a centralized ABI struct, and specialize around 
it: 
 

enum class StoragePolicy { kXmm, kYmm, /* ... */ }; 

template <StoragePolicy policy, int N> struct Abi {}; 

 

template <typename T> using native = Abi<kYmm, 32 / sizeof(T)>; 

template <typename T> using compatible = Abi<kXmm, 16 / sizeof(T)>; 

 
Then every operation is implemented and specialized around the centralized struct Abi. 
 
Unlike native and compatible, scalar and fixed_size is not an alias. Currently they require 
extra specializations other than the ones on struct Abi. 

Wording 
Modify [parallel.simd.synopsis] as follows: 
 
structusing scalar {}= see below; 
template <int N> structusing fixed_size {}= see below; 
 
Modify [parallel.simd.abi] as follows: 
 
structusing scalar {}= see below; 
template <int N> structusing fixed_size {}= see below; 
 
Modify [parallel.simd.abi] p3 as follows: 
scalar is an alias for an unspecified ABI tag that is different from fixed_size<1>. Use of the 
scalar tag type requires data-parallel types to store a single element (i.e., simd::size() returns 1). 
[ Note: scalar shall not be an alias for fixed_size<1>. — end note ] 
 
Modify [parallel.simd.abi] p5 as follows: 

https://issues.isocpp.org/show_bug.cgi?id=401


fixed_size<N> is an alias for an unspecified ABI tag. fixed_size does not introduce a 
non-deduced context. Use of the simd_abi::fixed_size<N> tag type requires data-parallel types 
to store N elements (i.e. simd<T, simd_abi::fixed_size<N>>::size() returns N). simd<T, 
fixed_size<N>> and simd_mask<T, fixed_size<N>> with N > 0 and N <= max_fixed_size<T> 
shall be supported. Additionally, for every supported simd<T, Abi> (see [simd.overview]), where 
Abi is an ABI tag that is not a specialization of simd_abi::fixed_size, N == simd<T, 
Abi>::size() shall be supported. 

Reference 
● The original paper: P0214R9 
● Experimental implementation: https://github.com/google/dimsum 
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