
P0772R1: Execution Agent Local Storage

Document number: P0772R1 (RAP)
Date: 2018-05-07
Authors: Nat Goodspeed <nat@lindenlab.com>

Michael Wong <michael@codeplay.com>
Paul McKenney <paulmck@linux.vnet.ibm.com>
Jared Hoberock <jhoberock@nvidia.com>
Carter Edwards <hedwards@nvidia.com>
Tony Tye <Tony.Tye@amd.com>
Alex Voicu <avoicu@amd.com >
Gordon Brown <gordon@codeplay.com>
Mark Hoemmen <mark.hoemmen@gmail.com >

Audience: SG1

Reply-to: nat@lindenlab.com

1 Changelog 2

2 Abstract 2

3 Non-goal 3

4 Deliberate Omission 3

5 The Problem 3

6 State of the Art 3

7 Recommended Solution for New Code 4

8 Example Use Cases 4

9 Desired Behavior 4

10 Static versus Dynamic Knowledge 5

11 Right of Refusal 6

12 Storage on Demand 6

13 Implementation-Defined Lifespan 7

14 Storage Sharing 7

P0772R1: Execution Agent Local Storage 1 2018-05-07

mailto:nat@lindenlab.com
mailto:michael@codeplay.com
mailto:paulmck@linux.vnet.ibm.com
mailto:jhoberock@nvidia.com

15 Migration 8

16 API Speculation 8

17 Implementation Speculation 9

18 Questions and Straw polls 10

19 Abbreviation 10

20 Acknowledgements 11

21 References 11

1 Changelog
R0: initial version discussed in ABQ
R1: adjust for feedback from Heterogeneous C++ Google Group and ABQ
“Right of Refusal”: exceptions as only mechanism for communicating refusal probably not viable
“Execution Agent Nesting” – recognize that most EAs are based on underlying EAs. Example:
Fiber running on a std::thread. If code running on such an EA requests TLS (and it’s not able to
provide TLS), it shouldn’t necessarily fall back to the underlying EA by default.
“Do not limit reuse of TLS” when lifetimes don’t overlap.
Difference between thread local and task local.
Is initialization/construction involved on lightweight EA.

2 Abstract
The Concurrency Study Group has long recognized that we have yet to address the interaction between
thread-local storage and execution agents finer grained than std::threads. This paper is an attempt to
explore that space.

In brief:

● This paper proposes that the C++ runtime track a “current execution agent.”
● Certain kinds of execution agents are based on underlying execution agents. For example, a fiber

depends on an underlying thread in just this way. Therefore, the notion of “current execution agent”
is nested. At each layer there is a current agent; at any given step in program execution, there is an
innermost current agent.

● In ordinary C++ code, the innermost current agent must be determined dynamically. Just as a library
function cannot know the nature of the calling application, so it cannot statically determine on what

P0772R1: Execution Agent Local Storage 2 2018-05-07

execution agent (or even on what kind of execution agent) it is running. 1

● This paper proposes a facility by which a function can request storage local to the innermost current
execution agent. Importantly, not every kind of agent will grant that request: an implementer must
have the option to refuse.

● The lifespan of that storage, and the circumstances under which it is initialized and destroyed, are
implementation-defined.

3 Non-goal
It is our belief that it would be a mistake to alter the current semantics of the thread_local keyword.
Much code has been written, and will be written before any such change could be published, that would
break in that case. More unfortunate still, since the effects would be strongly timing-dependent, many of the
resulting bugs would be subtle and intermittent.

That implies that adapting code to use the general execution agent local storage rather than specifically
thread_local storage requires explicit editing and recompilation.

If there is disagreement on this point, please surface it.

4 Deliberate Omission
This paper does not yet attempt to present a concrete API. If this direction proves to be worth pursuing, the
authors hope that the supporting API can be evolved collaboratively.

5 The Problem
Thread-local storage (TLS) has a long history in C++, having been implemented previously by many vendors
following GNU TLS. Since C++11, we have added thread_local that duplicates much of GNU TLS
functionality with a distinct keyword, so as not to collide with GNU name practice. Its various use cases are
explored in P0072 and P0097.

TLS made some sense when there might be up to 16 CPUs served by 128 GB of DRAM, such that each
thread could have 8 GB of footprint, and reasonable stack space.

The problem is that TLS in its current form did not account for the explosion in massive parallelism,
especially in the form of GPUs, where the ratio of GPU streaming units to DRAM can be as much as
5,000-16,000 units to 16 GB. In such cases, not only is each execution agent’s stack space extremely limited,
any increase in startup latency would also be undesirable, especially if we were to represent each streaming
unit as an execution agent per P0072. Finally, P0072, P0097 and P0108 all point out additional problems
with TLS.

6 State of the Art
TLS has implementation experience in many languages including pthread, Windows, C, C++, Lisp, D, Java,
C#/.Net, Objective C/Pascal, Perl, Python and Ruby. Even OpenMP had TLS called threadprivate ,
which was effectively implemented using the platform TLS once it became available. While some wish to
ban TLS, its usefulness remains in many code bases, especially the Linux kernel. As such, outright banning it

1 Certain C++ statements may be compiled for one specific kind of execution agent. In that case, of course, the nature of that
agent can be statically known.

P0772R1: Execution Agent Local Storage 3 2018-05-07

seems out of the question.

The authors definitely do not want to alter the existing semantics of thread_local . Rather, they adopt a
new facility allowing an application to associate local data with each execution agent, which may be much
lighter weight than std::thread.

7 Recommended Solution for New Code
For new code, there are a couple of reasonable approaches to providing storage that persists between calls:
● The affected function(s) can be member(s) of a class. Each instance of that class provides storage

that persists between calls to member functions.
● Alternatively, each affected function can be written to accept an object it can use for storage that

persists between calls, and callers can be required to pass such an object.
These two alternatives are effectively equivalent: the implicit this pointer passed to each member function
provides the storage for use between calls.
If we were working with a brand-new language without any nontrivial code base, that might suffice.

8 Example Use Cases
Consider a class intended to measure runtime performance at various levels of granularity. The designed
usage is to declare a stack instance near the top of each function of interest. Its constructor captures a string
label and the start time; its destructor subtracts start time from current time.
To model the hierarchy of levels of granularity, the constructor also links *this as the new head of a LIFO
list. The destructor unlinks it.
In a single-threaded program, it would be reasonable to use a class static pointer member as the anchor for
that linked list.
In a program aware of C++11 threads, the anchor for that linked list would be a thread_local pointer.
Mark Hoemmen suggested two additional uses cases:
- use as a simple scratch space with per thread semantics, or
- persistent state to communicate across agents
For finer-grained execution agents, to what should that declaration be changed?

Consider a thread-parallel algorithm that requires some fixed amount of “scratch” memory space per parallel
loop iteration. The algorithm really only needs as much scratch space as the number of concurrently
executing threads, which could be much less than the number of parallel loop iterations. With thread-local
storage, each thread could have “its own scratch space” that it may freely use. Users would then not need to
write thread pool implementations.

Consider an agent-based (not the same as execution agents) concurrent application, where agents may send
or receive messages to each other. If different threads could access each other’s thread-local storage, then
agents could use thread-local storage to send or receive messages without needing to copy data. Compare to
“zero-copy” implementations of the Message Passing Interface (MPI) distributed-memory programming
model that rely on shared-memory hardware.

9 Desired Behavior
Consider a library function func() that requires some storage that persists from one call to the next.

P0772R1: Execution Agent Local Storage 4 2018-05-07

Suppose the default thread, the one running main(), launches a std::thread t . Suppose further that
thread t launches fibers f1 , f2 and f3.

When func() is called a second time by the default thread, it should obtain the same storage as the
previous call from the default thread.

When func() is called a second time by fiber f1 , it should obtain the same storage as the previous call
from f1 . This storage should be distinct from that belonging to the default thread.

When func() is called a second time by fiber f3 , it should obtain the same storage as the previous call
from f3 . This storage should be distinct from that belonging to fiber f1 or the default thread.

In other words:

When func() is called by the default thread, the innermost current agent is the default thread. The storage
obtained by func() here is thread-local, in the conventional sense.

When func() is called by fiber f3 , although the current thread is t , the innermost current agent is fiber
f3 . The storage obtained by func() in that case must be fiber-local to remain distinct from the storage
local to f1 .

We expect that if thread t calls func() before launching any fibers, func() will obtain thread-local
storage. That storage will remain distinct from the storage obtained when func() is called by f1 or f3 .

This is why the innermost current execution agent must be determined dynamically.

It should be possible to build a given program with dynamic innermost current execution agent tracking
disabled. In that case, every request for execution agent local storage will be refused.

10 Static versus Dynamic Knowledge
The still-to-be-designed API proposed in this paper is intended to address use cases in which the innermost
current execution agent cannot be known statically – or, put differently, in which statically engaging
facilities for one specific kind of execution agent would prohibit that code from being called on any other
kinds of execution agents.

Consider the case of maintaining a library whose API is cast in concrete. New back-end requirements
mandate persisting information from one call to the next. Because the API cannot be changed, you find
yourself contemplating thread_local , the only existing facility for agent-specific storage. But you are
anxiously aware that your library code might be called by all kinds of different execution agents, and you do
want to support that kind of usage. How should you address your need for storage that persists from one call
to the next, in a way that doesn’t prohibit lightweight execution agents?

This paper targets such use cases.

It could be argued that when a given C++ function is compiled for a specific target execution agent – when
the generated code cannot be run on any other kind of execution agent – existing static facilities (with
distinct names) suffice. On the other hand, in such a case the compiler could be taught to recognize use of the
API requested in this paper, and emit code specific to the appropriate execution agent.

But this paper is not primarily focused on the case in which the execution agent can be statically known.

P0772R1: Execution Agent Local Storage 5 2018-05-07

11 Right of Refusal
An implementer of, say, GPU execution agents, or SIMD lanes, might refuse to provide storage local to an
execution agent instance.

This argues against introducing a declaration keyword such as agent_local. The API by which this
storage is requested must permit the implementation not to support local storage at all.

However, when the innermost current execution agent refuses to support local storage, it is important that the
API not fall back to the next outer layer of execution agents. Storage private to the innermost current
execution agent is semantically different from storage shared with other execution agents at that innermost
layer; transparently substituting the latter for the former would be error-prone at best.

(It is plausible to imagine a separate request API that does support fallback, if that’s really acceptable to the
requesting code.)

12 Storage on Demand
The cost of constructing execution agent local objects constitutes another argument against a declaration
keyword. One of the present difficulties with thread_local is the implication that all such declarations
must be initialized upon launch of any new thread, and destroyed upon thread termination. It has been
pointed out that even a thread that does not access a given thread_local declaration must still pay for
its construction and destruction.

Instead, the request API should take the form of a function call or class constructor (though refusal, in the
latter case, would seem to require an exception). Only storage explicitly requested would be constructed.
Only that storage would be destroyed.

We might consider something like the boost::thread_specific_ptr API.

We further consider the idea of a standardized allocator type that accepts a size argument.

If all three of these conditions hold:

○ an instance of that allocator is declared in class scope
○ the declaration is marked agent-local, by whatever means we decide
○ its constructor argument is constexpr

then the constructor argument to the allocator is added to the total agent-local storage to be preallocated for
that class, for an execution context that requires preallocation.

It is up to the code to pass that allocator instance to any standard library type (e.g. std::vector) that may
allocate dynamic storage. It is not sufficient to mark a declaration of a std::vector as agent-local, without
passing an instance of the special allocator: that would provide in agent-local storage a std::vector instance
whose dynamic storage is nonetheless obtained by operator new().

Significant questions still remain in terms of how does it get the object?

(1) Specially tagged class member or

(2) passed in to the operator().

P0772R1: Execution Agent Local Storage 6 2018-05-07

Carter prefers approach (2) because it requires less machinery to implement especially when using lambdas.
Another orthogonal design question is: what kind of memory resource? Stack-based allocation is the lightest
and most performant, but least flexible.

13 Implementation-Defined Lifespan
It is important to permit the implementer of a given category of execution agents to determine (and
document) the circumstances under which execution agent local objects are destroyed and reconstructed.

For threads and fibers, it may be acceptable to destroy local objects on termination of the agent.

An implementer of very lightweight agents might reasonably take the position that the storage provided by
the API will not be shared by any other currently-running agent – but that storage might be “inherited” from
a previously-terminated agent, and thus contain non-initial values.

We also need to clarify the differences between work and execution agent in the lifecycle of a callable with
agent-local storage requirements. Carter Edwards defines it as:

● construction (lambda capture)
● submission to an execution context

○ Request net amount of agent-local-storage at submission?
○ Might not be fulfillable request, should fail now if cannot
○ Might influence scheduling

● waiting in the execution context to be executed
● State transition waiting->executing

○ Execution agent is attached / associated; permissible to have happened earlier
○ Must all of this agent’s agent-local-storage be ready / pre-allocated before execution?
○ May pre-reallocate the agent-local storage that net amount of requested storage is available

before execution begins? (for some environments it may be advantageous to pre-allocate
while others will prefer deferred allocation)

● being executed on an execution resource by an execution agent
● State transition to executing->complete

○ Agent-local-storage can be released
○ Execution agent can be detached

● complete
● destruction

 This life cycle is important to preserve “agent local storage” across swap out/in, and the work item with it.

14 Storage Sharing
Calling the API to request execution agent local storage should either provide that storage, or refuse.
Supposing that storage is provided, is it permitted to pass a pointer or a reference to such an object to some
other execution agent at the same layer?

One is tempted to answer “of course” – but perhaps this, too, should be an open question.

If the restriction is implementation-defined, how would we prohibit passing a pointer across execution agent

P0772R1: Execution Agent Local Storage 7 2018-05-07

instances?

If the restriction applies to all implementations, enforcement would seem to depend on the details of the API.
A class resembling a container (e.g. agent_local<T>) could refuse to support operator& . But with a
class resembling a smart pointer (e.g. agent_local_ptr<T>), that would be harder: consider (&*ptr) .

Related question: should there be an API by which code running on a given execution agent could retrieve
storage belonging to some other execution agent?

The answer to the second question is less clear. That presupposes some sort of agent ID; not all providers of
execution agents will want to guarantee distinct agent IDs. (On the other hand, perhaps any execution agent
implementation willing to provide agent-local storage would also be willing to provide distinct agent IDs.)

More thorny: are all execution agent IDs of the same type? Or should the ID type itself be distinct for each
execution agent implementation? Is it permitted for code running on (e.g.) a fiber to request storage local to
(e.g.) some other thread? If that distinction isn’t indicated by the type of the ID, how should it be indicated?
Must we also add an execution agent implementation ID?

If there is a mechanism by which one agent can retrieve local storage for some other agent, it should at least
be easier for an implementation to decide whether to support or refuse such access.

15 Migration
Consider a fiber f1 running on thread t1 . In some hypothetical future, it might be possible to migrate a fiber
from one underlying thread to another. What happens if fiber f1 is migrated to thread t2 ?

We submit that in that case, fiber f1 must continue to find its original fiber-local storage even though it is
now running on a different underlying execution agent.

16 API Speculation
Discussions of this idea to date have surfaced a number of interesting questions, some of which are touched
on below. This section explains why this paper does not yet propose a concrete API.

● A declaration API analogous to boost::thread_specific_ptr , on the face of it, would seem
to require an exception to indicate refusal to provide execution agent local storage. Should such a
class have an API more like optional<thread_specific_ptr> ? Or perhaps a valid()
method which must be checked before any attempt to dereference?

● Should the request API literally require a factory-function call, perhaps returning a
pair<pointer_type, bool> ?

● A smart pointer type can be initialized to nullptr; if the caller wants to reset() it to something
other than nullptr , the caller must explicitly construct the referenced object. That still implies that
at a time defined by the execution agent implementation, any non-nullptr value belonging to an
agent must be delete d. Must this facility support a custom deleter function?

● What about non-pointer types? Should the API look more like agent_local<T>? What
restrictions, if any, would we want to place on T? Must it be intrinsic? Must it be pointer-sized? Must
it be trivially constructible and destructible?

● Should the restrictions on T be determined by the API, or more specifically by each execution agent
implementation? A given call to the request API might engage different execution agent
implementations at runtime – therefore if the restrictions vary by execution agent implementation, T

P0772R1: Execution Agent Local Storage 8 2018-05-07

cannot be validated at compile time. Apparently that means that the implementation would refuse to
provide storage for any type it cannot support. In that case, should there be an error code of some sort
to allow a caller to distinguish between “execution agent implementation does not support agent-local
storage at all” and “execution agent implementation does not support the requested type”?

● If we allow non-pointer T , any attempt to access that object must necessarily instantiate it – or throw
an exception. (This could be a convenience API for people willing to risk an exception.) That must
include binding a reference to the instance. Do we implicitly instantiate every agent_local
declaration within a given scope? Or do we try to preserve lazy instantiation, but require front-end
support to intercept binding a reference?

Given the open questions, the authors presently favor an API specific to pointers – but would be delighted to
accept concrete solutions to these issues.

17 Implementation Speculation
None of this section should be taken as definitive. It is merely a thought experiment to demonstrate that the
proposed functionality should be implementable. The authors do not claim that the thought experiment is in
any way optimal.

In the present C++ execution model, a kernel thread – whether implicitly launched by the operating system,
or explicitly by application code – is the execution agent underlying all other agents.

static objects provide process-local storage, as it were.

thread_local objects support the next inner layer of execution agents.

It seems plausible that a linked list of objects representing execution agent layers could be anchored with a
thread_local pointer.

It is important to have an extensible underlying mechanism permitting new implementations of execution
agents and their associated storage support (if any). Perhaps the Standard might specify an
implementer-facing base class from which an implementation must derive its own representation of its
execution agent layer. That base class could define virtual methods to request execution agent local storage.
Then the application-facing storage request function could simply invoke the virtual method on the current
stack top.

One could imagine an implementer-facing template function such as: “If my class is already on the stack of
execution agent layers, return its pointer. Otherwise, construct an instance and link it as the new stack top.”
An execution agent implementation could engage this function when launching a new agent, which might or
might not be the first at that layer.

Once an application has launched fibers within a given thread, all subsequent code on that thread is logically
running on one of those fibers. On the other hand, running code on SIMD lanes does not mean that all
subsequent code continues running on SIMD lanes. If a SIMD implementation were to push a new execution
agent layer representation, it must be able to pop it. On the third hand, it might be unnecessary for a SIMD
execution agent implementation to do either: perhaps the correct behavior for SIMD can be determined at
compile time.

Naturally, context switching at a given layer from one execution agent to another must update that layer’s
representation object in such a way that subsequent storage requests will obtain storage associated with the
new current agent.

P0772R1: Execution Agent Local Storage 9 2018-05-07

However, we need not intercept context-switching between std::threads: anchoring the layer stack with
a thread_local pointer implicitly takes care of that.

18 Questions and Straw polls
We remain unsure whether to introduce a keyword for agent-local variable declarations. We want some way
to constrain the set of agent-local declarations that the runtime is required to support. Using class scope is an
attempt to address that problem. Please suggest better ways.

Should we introduce an agent-shared annotation as well as agent-local? On GPUs there can be storage that is
only accessible by a single execution agent that may be desirable to use due to performance.

Would it be UB to access this storage from a different execution agent to allow an implementation to use
special hardware if available?

When someone wants to be able to execute existing code on a newer execution agent -- but that code uses
thread_local or static storage -- what's WG21's recommendation for replacing thread_local? Rewrite the
entire call chain?

Should we have agent-shared between all execution agents or separate ALS into local and static variants to
support dynamic behaviour.

How is the amount of agent-local-storage is decided, and how it would be accessed in the execution agent.
For example, does the user specify a keyword on the variables they want to have agent-local-storage, and
then access the storage by that name? Or is there a single allocation that can be specified and a language
intrinsic to access that single allocation?

How can the compiler limit which declarations it has to consider to determine the size of agent-local-storage
for a specific kernel. In the presence of indirect function calls, and dynamically loaded libraries, how would
that work? A function pointer could be passed into the callable which may be defined in another dynamically
loaded library, which declares agent-local-storage.

How the compiler will decide on how to address the agent-local-storage. If it is defined in multiple functions
that can be called by disjoint kernels, then would the placement in the agent-local-storage area need to agree
amongst all the kernels? If so then that may mean the compiler effectively has to allocate space for all
agent-local-variables whether they are used by a kernel or not in order to get a consistent layout.

Many current implementations of kernel compilers rely on seeing the full set of sources of a kernel, and may
even perform full inlining which can avoid issues of sharing the code of a function between kernels. But I am
unclear if the restrictions these impose are acceptable here.

19 Abbreviation
The authors hope that we collectively refrain from using “ALS” to describe this proposed feature. We would

P0772R1: Execution Agent Local Storage 10 2018-05-07

also avoid “agent-specific storage” due to unfortunate initials. Perhaps “per-execution agent local storage,”
i.e. PEALS? EALS? Or perhaps XLS – though the latter is already overloaded.

20 Acknowledgements
This paper is based on discussions between the authors and JF Bastien. Thanks to the discussion held in the
Heterogeneous C++ Google Group.

21 References
boost::thread_specific_ptr www.boost.org/doc/libs/release/doc/html/thread/thread_local_storage.html

P0072 Light-Weight Execution Agents
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0072r1.pdf

P0097 Use Cases for Thread-Local Storage
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0097r0.html

P0108 Skeleton Proposal for Thread-Local Storage (TLS)
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0108r1.html

XLS https://en.wikipedia.org/wiki/XLS

Heterogeneous C++
Google Group

https://groups.google.com/forum/#!forum/hetero-c

P0772R1: Execution Agent Local Storage 11 2018-05-07

http://www.boost.org/doc/libs/release/doc/html/thread/thread_local_storage.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0072r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0097r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0108r1.html
https://en.wikipedia.org/wiki/XLS

