
P0581R1 2018-02-11 Reply-To: gdr@microsoft.com

1

Standard Library Modules
Marshall Clow Beman Dawes Gabriel Dos Reis

Stephan T. Lavavej Billy O’Neal Bjarne Stroustrup

Jonathan Wakely

Abstract
With recent progress made on the ‘module’ language feature, it is long overdue that we start a

conversation around uses of modules in the standard library. More specifically, how should the standard

library be logically presented as set of modules to C++ programmers? This is a proposal to answer that

question.

Design Principles
The presentation of the standard library as set of modules follows a few design principles:

• Leave “C headers” alone

• Present modules as logical sets of functionalities

• Robust support for C++ in diverse environments

• Every standard facility is provided by exactly one module

Leave “C headers” alone
We strongly recommend leaving “C headers” alone because only confusion and chaos have ever resulted

from past attempts at legislating what C standard headers should contain. The reality is that in practice,

the contents of those headers are outside the reach of most C++ implementers. One could wish that

wasn’t the case, but this is the world we live in.

Present modules as logical sets of functionalities
In the past, we’ve structured standard headers to minimize their contents in the hope of aiding compiler

throughput. The module system is designed to attain the ideal of zero abstraction overhead. That is, a

module does not impose any measurable overhead if none of the names it provides is referenced in a

translation unit. Consequently, we propose to structure standard library modules around logical set of

functionalities, shifting the focus to uses as opposed to implementations.

Robust support for C++ in diverse environments
The decomposition of the standard library into set of logical modules should not preclude uses of C++ in

more diverse environments. Rather, the logical presentation should enable more uses – not less – in

environments such as embedded systems, operating system kernel modes, etc. The traditional dichotomy

of “freestanding” vs. “hosted” implementations is not a good guide. For example, std::unique_ptr

can be used in embedded systems; similarly the vast majority of the standard algorithms can be used in

kernel mode. Let’s not forget that while the module core language constructs affect declarations at the

source program level, they also imply a certain decomposition and layering of runtime support.

P0581R1 2018-02-11 Reply-To: gdr@microsoft.com

2

Every standard facility is provided by exactly one module
As noted earlier, the existing header files structure is not guided by any discernable logical principle. That

leads to the unfortunate situation where a given standard facility may be provided by more than one

standard header. For example, which header “owns” size_t, or abs? The architecture presented here

aims to avoid that confusion. Ultimately, there is only one module that owns an entity or is responsible to

providing a functionality. Other, larger, modules may re-export a module that provides a certain

functionality. That overall architecture is therefore hierarchical.

Proposed Structures

Naming
All standard library modules should be named according to the pattern ‘std.xyz’. However, we do not

recommend a reflexive one-to-one mapping of headers <xzy> to module ‘std.xzy’. At this stage of the

discussion, we suggest to focus primarily on the logical decomposition of the facilities rather than the

names of the modules themselves, however important they are.

Modules
As a first approximation, we suggest the following: std.fundamental, std.core, std.math, std.io,

std.concurrency, std.os, and std.

1. Module std.fundamental provides the declarations of the following facilities:

• Content of <cstddef>

• Content of <limits>

• Content of <cfloat>

• Content of <cstdint>

• Content of <new>

• Content of <typeinfo>

• Content of <exception>

• Content of <initializer_list>

• Content of <csignal>

• Content of <csetjump>

• Content of <cstdlib>

• Content of <stdexcept>

• Content of <system_error>

• Content of <utility>

• Content of <tuple>

• Content of <optional>

• Content of <variant>

• Content of <any>

• Content of <bitset> without the IO formatting declarations

• Content of <type_traits>

• Content of <ratio>

• Content of <chrono>

• Content of <ctime>

P0581R1 2018-02-11 Reply-To: gdr@microsoft.com

3

• Content of <atomic>

• Content of <typeindex>

• std::unique_ptr and associated classes and functions from <memory>

• std::shared_ptr and associated classes and function from <memory>

2. Module std.core provides the declarations of the following facilities:

o Re-export of module std.fundamental

o Content of <array>

o Content of <list>

o Content of <forward_list>

o Content of <vector>

o Content of <deque>

o Content of <queue>

o Content of <stack>

o Content of <map>

o Content of <set>

o Content of <unordered_map>

o Content of <unordered_set>

o Content of <iterator>

o Content of <algorithm>

o Content of <execution>

o Content of <functional>

o Content of <string_view>

o Content of <string> without IO declarations

o Content of <memory> except std::unique_ptr and associated classes and functions,

std::shared_ptr and associated classes and functions

o Content of <memory_resource>

o Content of <scoped_allocator>

o Content of <regex>

3. Module std.io provides the declarations from the following headers:

o <cctype>

o <cwctype>

o <cwchar>
o <cstdlib>

o <cuchar>

o <locale>

o <codecvt>

o <clocale>

o <iosfwd>
o <iostream>

o <ios>

o <streambuf>

o <istream>

o <ostream>

P0581R1 2018-02-11 Reply-To: gdr@microsoft.com

4

o <iomanip>

o <sstream>

o <fstream>
o <cstdio>

o Declarations for IO formatting from <complex>

o Declarations for IO formatting from <string>

o Declarations for IO formatting from <bitset>

4. Module std.os provides the declarations from the following header:

o <filesystem>

5. Module std.concurrency provides the declarations for the following facilities:

o Content of <mutex>

o Content of <thread>

o Content of <condition_variable>

o Content of <shared_mutex>

o Content of <future>

6. Module std.math provides the declarations from the following headers:

o Content of <complex> without the IO formatting declarations

o <numeric>

o <valarray>

o <random>

o <cmath>

7. Module std provides all the standard facilities. It can be thought of as an aggregation of all

preceding modules.

Clearly, this list is incomplete, but it is suggested as a starting point of the conversation. We are not aiming

for a magical number, e.g. 5. Rather, we are aiming for a set of principles to guide presentation of existing

standard library facilities as logically coherent sets that also vigorously support uses of C++ in diverse

environments. The number of standard library module isn’t expected to remain fixed in its evolution;

consequently the principles will play key roles in the evolution of the standard library structure. For

example, care is being exercised to facilitate uses of ‘std.core’ in diverse environments, including

embedded systems and those environments where default global allocation functions ‘new’ aren’t

appropriate. Similarly, the IO formatting parts are separated from core functionalities such as complex,

bitset, and string.

Freestanding implementations are required to provide at least the module std.fundamental.

Concepts
If we had standard library concepts, as in the Range TS, they would go into std.core for the most part.

Acknowledgment
Thanks to Gor Nishanov for his feedback on early draft of the R1 revision.

Changes from R0
• Expansion of the general principles behind the overall architecture

• New section on formal specification

P0581R1 2018-02-11 Reply-To: gdr@microsoft.com

5

• State the place of standard concepts

• Rename std.threading to std.concurrency

• Removal of std.memory

• Rename std.filesystem to std.os

• Removal of std.regex, contents folded into std.core

• Rename std.numeric to std.math.

• New module std.

