
Document: P0466R1
Date: 2018-02-12
Reply-to: Lisa Lippincott <lisa.e.lippincott@gmail.com>
Audience: Core → Library

Layout-compatibility and

Pointer-interconvertibility Traits

Lisa Lippincott

Abstract

Over dinner at CppCon, Marshall Clow and I discussed a bit of code
that relied on a reinterpret cast between pointers to layout-compatible
types. As it happened, the types weren’t layout-compatible after all. I
opined that there should be a way to statically assert layout-compatibility,
so that the error would be caught at compile time, rather than dinner time.
Marshall replied, “Write a proposal.” This is that proposal.

In addition to a test for layout-compatibility, I propose tests corre-
sponding to reinterpret cast to and from the initial subobject of a class
type, and for correspondence in the common initial sequence of two class
types.

Changes since r0: These changes are based on the Library Evo-
lution discussion at Kona in 2017. First, renaming the plural traits:

are layout compatible → is layout compatible

are common members → is corresponding member

Second, changing is initial member and is corresponding member

from constexpr functions to ordinary traits using template <auto>.
My thanks go to Louis Dionne for the sample implementation code.

On my own initiative, I have added a discussion and notes on
the dangers of deducing the containing type from a member pointer
constant.

Currently, a program may rely on layout-compatibility, but cannot assert that
the layout-compatibility it relies upon pertains. Even when a programmer care-
fully verifies layout-compatibility, a future change to the types involved may
break the compatibility, silently introducing a bug.

A compiler, having full information about the types, can easily check layout-
compatibility. But the compiler currently has no way to determine which types
need to be layout-compatible. This gap can be bridged straightforwardly with
a type trait expressing the layout-compatibility relationship:

1

template <class T, class U> struct is_layout_compatible;

Using this trait, a function may statically assert the layout-compatibility it relies
upon.

Delving deeper into the problem, I found another situation where the user
of a reinterpret cast might rely on a fact about the type system that can’t
be asserted: casting between a pointer to an object and a pointer to its initial
base or member subobject. A simple type trait handles the base subobject case:

template <class Base, class Derived> struct is_initial_base_of;

The member subobject case turns out to be trickier. The pattern suggests
a trait like this:

template <class S, class M> struct initial_member_has_type;

But that’s not really useful. A programmer relying on such a cast almost cer-
tainly has a particular member in mind. The test should take a member pointer
as a parameter:

template <class S, class M, M S::*m> struct is_initial_member;

That works, but with three template parameters, it’s really cumbersome. In
use, the first two parameters are redundant — the type of m determines S and
M. A template that deduces these types is easier to use:

template <auto m> struct is_initial_member;

Such a trait can be implemented by forwarding decltype(m):

template <auto m>

struct is_initial_member: is_initial_member_impl< decltype(m), m >

{};

A similar situation can occur with layout-compatibility: a programmer may
rely on particular members of layout-compatible types overlaying each other.
More generally, the overlap of the common initial sequence of two types (9.2
[class.mem]) can only be relied upon if the programmer is sure that particular
members correspond. So I’m proposing another trait for testing correspondence
in the common initial sequence:

template <auto m1, auto m2> struct is_corresponding_member;

Like is initial member, this trait can be implemented by forwarding decltype(m1)

and decltype(m2).

Note: There is a danger in deducing the type of the containing class from
the type of a pointer-to-member constant. Consider the following example:

2

struct A { int a };

struct B { int b };

struct C: public A, public B {};

static_assert(is_initial_member_v< &C::b >); // succeeds!

// &C::b has type int B::*, not int C::*.

The awkwardness of the deduced type of pointer-to-member constants was dis-
cussed in core language issue 203; no action was taken for fear of breaking
existing code.

1 is layout compatible

Add to table 40 in 20.15.6 [meta.rel]:

Template Condition Comments

template <class T,

class U> struct

is layout compatible;

T and U are layout-
compatible (3.9 [ba-
sic.types])

Add to 20.15.2 [meta.type.synop], in the section corresponding to 20.15.6
[meta.rel]:

template <class T, class U> struct is_layout_compatible;

2 is initial base of

Add to table 40 in 20.15.6 [meta.rel]:

Template Condition Comments

template <class Base,

class Derived> struct

is initial base of;

Derived is a standard-
layout class with no
non-static data mem-
bers, and Base is the
first base of Derived.

An object is pointer-
interconvertible (3.9.2
[basic.compound])
with its initial base
subobject.

Add to 20.15.2 [meta.type.synop], in the section corresponding to 20.15.6
[meta.rel]:

template <class Base, class Derived> struct is_initial_base_of;

3

3 is initial member

This pretty clearly belongs in <type traits> (20.15 [meta]), but I don’t see a
clear choice of subsection to put it in. Perhaps it goes in 20.15.6 [meta.rel], or
perhaps a new subsection, “Member relationships” is appropriate.

Wherever it fits, here is some text to add:

template <auto m> struct is_initial_member;

A UnaryTypeTrait with a BaseCharacteristic of true type if all of the following
conditions hold, and false type otherwise.

• m is a member pointer D S::*m.

• S is a standard-layout type.

• D is an object type.

• Either S is a union or m points to the first non-static data member of S.
[Note: An object is pointer-interconvertible (3.9.2 [basic.compoind]) with
its initial member subobjects. —end note]

A program which instantiates this template where D is not an object type is
ill-formed.

[Note: The type of a pointer-to-member constant is not always as it appears,
and this may lead to errors in using is initial member in conjunction with
inheritance. Consider the following example:

struct A { int a };

struct B { int b };

struct C: public A, public B {};

static_assert(is_initial_member_v< &C::b >); // succeeds!

// &C::b has type int B::*, not int C::*.

—end note]

Add to 20.15.2 [meta.type.synop], in the corresponding section:

template <auto m> struct is_initial_member;

4 is corresponding member

Add this text to the same subsection as is initial member:

template <auto m1, auto m2> struct is_corresponding_member;

A UnaryTypeTrait with a BaseCharacteristic of true type if all of the following
conditions hold, and false type otherwise.

4

• m1 and m2 are member pointers D1 S1::*m1 and D2 S2::*m2, respectively.

• S1 and S2 are standard-layout types.

• D1 and D2 are object types.

• m1 and m2 point to corresponding members of the common initial sequence
(9.2 [class.mem]) of S1 and S2.

A program which instantiates this template where either D1 or D2 is not an
object type is ill-formed.

[Note: The type of a pointer-to-member constant is not always as it appears,
and this may lead to errors in using is corresponding member in conjunction
with inheritance. Consider the following example:

struct A { int a };

struct B { int b };

struct C: public A, public B {};

static_assert(is_corresponding_member_v< &C::a, &C::b >); // succeeds!

// &C::a and &C::b have types int A::* and int B::*, respectively.

—end note]

Add to 20.15.2 [meta.type.synop], in the corresponding section:

template <auto m1, auto m2> struct is_corresponding_member;

5

