
P0339r4: polymorphic_allocator<> as a vocabulary type Page 1 of 11

Doc No: P0339r4

Date: 2018-04-02

Audience: LWG

Authors: Pablo Halpern, Intel Corp. <phalpern@halpernwightsoftware.com>

 Dietmar Kühl <dkuhl@bloomberg.net>

polymorphic_allocator<> as a vocabulary type

Contents

1 Abstract .. 1
2 Change History ... 2

2.1 Changes since R3 ... 2
2.2 Changes since R2 ... 2
2.3 Changes since R1 ... 2
2.4 Changes since R0 ... 2

3 Motivation ... 3
4 Proposal Overview ... 4
5 Before and After .. 6
6 Alternatives Considered .. 8
7 Formal Wording .. 8

7.1 Document Conventions .. 8
7.2 Definition of polymorphic_allocator<> ... 9

8 References .. 11

1 Abstract

The pmr::memory_resource type provides a way to control the memory allocation for an

object without affecting its compile-time type – all that is needed is for the object’s
constructor to accept a pointer to pmr::memory_resource. The

pmr::polymorphic_allocator<T> adaptor class allows memory resources to be used in all

places where allocators are used in the standard: uses-allocator construction, scoped
allocators, type-erased allocators, etc.. For many classes, however, the T parameter does not

make sense. In this paper, we propose an explicit specialization of
pmr::polymrophic_allocator for use as a vocabulary type. This type meets the

requirements of an allocator in the standard but is easier to use in contexts where it is not
necessary or desirable to fix the allocator type at compile time.

This proposal is targeted for the C++ working paper.

mailto:phalpern@halpernwightsoftware.com
mailto:dkuhl@bloomberg.net

P0339r4: polymorphic_allocator<> as a vocabulary type Page 2 of 11

2 Change History

2.1 Changes since R3

The changes to pmr::polymorphic_allocator have been retargeted to the C++20 working

paper. The other changes (to function, promise, and packaged_task) have been split into a

separate paper (P0978), which is targeted at the next Library TS.

2.2 Changes since R2

Changed polymorphic_allocator<char> to polymorphic_allocator<byte>.

Rebased C++17 references to the C++17 DIS.

Fixed bugs in new_object() and delete_object() member functions.

2.3 Changes since R1

Minor changes, mostly taking into related proposals that have been accepted since R0.

2.4 Changes since R0

The original version of this proposal was to use polymorphic_allocator<void> as a

vocabulary type, instead of polymorphic_allocator<>. LEWG discussion in Oulu

uncovered two related problems with the original proposal:

1. void is not a valid value_type for an allocator, so polymorphic_allocator<void>

does not meet the allocator requirements.

2. Even if void were valid, its use here might conflict with the proposal to make void a

regular type, P0146.

To correct these problems, we made the following changes:

• Instead of polymorphic_allocator<void>, use polymorphic_allocator<>, which is

a shorthand for polymorphic_allocator<byte>.

• Instead of hijacking allocate and deallocate for byte allocation, add new member

functions, allocate_bytes and deallocate_bytes. This change also removed the

need for creating an explicit specialization of polymorphic_allocator, as the

allocate_bytes function can usefully be a member of all instantiations.

In addition, this proposal folds in the changes from P0335, which was applied to the C++17
WP in June, but was not applied to the LFTS.

https://wg21.link/P0978
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0146r1.html
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0335r0.html

P0339r4: polymorphic_allocator<> as a vocabulary type Page 3 of 11

3 Motivation

Consider the following class that works like vector<int>, but with a fixed maximum size

determined at construction:

class IntVec {

 std::size_t m_size;

 std::size_t m_capacity;

 int * m_data;

 public:

 IntVec(std::size_t capacity);

 : m_size(0), m_capacity(capacity), m_data(new int[capacity]) { }

 …

};

Suppose we want to add the ability to choose an allocator. One way would be to make the

allocator type be a compile-time parameter:

template <class Alloc = std::allocator<int>> class IntVec …

But that has changed our simple class into a class template, and introduced all of the
complexities of writing classes with allocators, including the use of allocator_traits. The

constructor for this class template looks like this:

IntVec(std::size_t capacity, Alloc alloc = {})

 : m_size(0), m_capacity(capacity), m_alloc(alloc)

 , m_data(std::allocator_traits<Alloc>::allocate(m_alloc, capacity)) { }

Our next attempt removes the templatization by using pmr::memory_resource to choose the

allocation mechanism at run time instead of at compile time, thus avoiding the complexities
of templates and ensuring that all IntVec objects are of the same type:

IntVec(std::size_t capacity,

 std::pmr::memory_resource *memrsrc = std::pmr::get_default_resource())

 : m_size(0), m_capacity(capacity), m_memrsrc(memrsrc)

 , m_data(memrsrc->allocate(capacity*sizeof(int), alignof(int)) { }

This solution works very well in isolation, but suffers from a number of drawbacks:

1. Does not conform to the Allocator concept

The pointer type, std::pmr::memory_resource*, does not meet the requirements of

an allocator, and so does not fit into the facilities within the standard designed for
allocators, such as uses-allocator construction (section 23.10.7.2
[allocator.uses.construction] in the C++17 DIS, N4660).

The original proposal for memory_resource, N3916, included modifications to the

definition of uses-allocator construction in order to address this deficiency. Those
changes were not added to the C++17 working draft with the rest of the Fundamentals
TS version 1.

2. Lack of reasonable value-initialization

The result of default-initialization of a pointer is indeterminate, and the result of value
initialization is a null pointer, neither of which is a useful value for storing in the

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2014/n3916.pdf

P0339r4: polymorphic_allocator<> as a vocabulary type Page 4 of 11

class. The programmer must explicitly call std::pmr::get_default_resource(), as

shown above. It is easily forgotten and is verbose.

3. Danger of null pointers

Any time you pass a pointer to a function, you must contend with the possibility of a
null pointer. Either you forbid it (ideally with a precondition check or assert), or you
handle it some special way (i.e., by substituting some default). Either way, there is a
chance of error.

4. Inadvertent reseating of the memory resource

Idiomatically, neither move assignment nor copy assignment of an object using an
allocator or memory resource should move or copy the allocator or memory resource.

With rare exceptions, the memory resource used to construct an object should be the
one used for its entire lifetime. Changing the resource can result in a mismatch
between the lifetime of the resource and the lifetime of the object that uses it. Also,
assigning to an element of a container would result in breaking the homogenous use
of a single allocator for all elements of that container, which is crucial to safely and
efficiently applying algorithms like sort that swap elements within the container. Raw
pointers encourage blind moving or copying of member variables during assignment,
which can be dangerous.

Issues 2, 3, and 4 would have been addressed by another paper, P0148, which proposed a
new type that provided a default constructor, and which was not assignable,
memory_resource_ptr. That proposal, however, was withdrawn in Jacksonville in 2016

when we (the authors of that paper as well as the current one) discovered that there was a
simpler and more complete solution possible without introducing a completely new type: by
using polymorphic_allocator. That discovery was the genesis of this paper.

4 Proposal Overview

We observed that a polymorphic_allocator object, which is nothing more than a wrapper

around a memory_resource pointer, can be used just about anywhere that a raw

memory_resource pointer can be used, but does not suffer from the drawbacks listed above.

Consider a minor rewrite of the IntVec class (above):

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2015/p0148r0.pdf

P0339r4: polymorphic_allocator<> as a vocabulary type Page 5 of 11

class IntVec {

 public:

 using allocator_type = std::pmr::polymorphic_allocator<int>;

 private:

 std::size_t m_size;

 std::size_t m_capacity;

 allocator_type m_alloc;

 int * m_data;

 public:

 IntVec(std::size_t capacity, allocator_type alloc = {});

 : m_size(0), m_capacity(capacity), m_alloc(alloc)

 , m_data(alloc.allocate(capacity)) { }

 …

};

Let’s consider the deficiencies of using a raw memory_resource pointer, one by one, to see

how this new approach compares to the previous one:

1. The definition of the allocator_type nested type and the constructor taking a

trailing allocator argument allows IntVec to play in the world of uses-allocator

construction, including being passed an allocator when inserted into a container that
uses a scoped_allocator_adaptor.

2. Value-initializing the allocator causes the default memory resource to be used,
simplifying the default allocator argument and reducing the chance of error. If IntVec

had a default constructor, the allocator would, again, use the default memory
resource, with no effort on the part of the programmer.

3. A polymorphic_allocator is not a pointer and cannot be null. Attempting to

construct a polymorphic_allocator with a null pointer violates the preconditions of

the polymorphic_allocator constructor. This contract can be enforced by a single

contract assertion in the polymorphic_allocator constructor, rather than in every

client.

4. The assignment operators for polymorphic_allocator are deleted. Thus, the problem

of accidentally reseating the allocator does not exist for polymorphic_allocator. The

deleted assignment operators would prevent the incorrect assignment operations from
being generated automatically, forcing the programmer to define them, hopefully with
the correct semantics. See P0335 for more details.

The above list shows that polymorphic_allocator can be used idiomatically to good effect,

but suffers from some usability issues. To begin, polymorphic_allocator is a template,

when what is desired is a non-template vocabulary type. Also, in order to allocate objects of
different types, it is necessary to rebind the allocator, a step backwards from direct use of
memory_resource, which does not require rebinding. This paper proposes a default

parameter for polymorphic_allocator so that polymorphic_allocator<> can be used as

a ubiquitous type. It also adds certain features to conveniently expose the capabilities of the
underlying memory_resource pointer.

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0335r0.html

P0339r4: polymorphic_allocator<> as a vocabulary type Page 6 of 11

In addition to normal allocator functions, the polymorphic_allocator<> proposed here

provides the following features:

• Being completely specialized, polymorphic_allocator<> does not behave like a

template, but like a class. This fact can prevent inadvertent template bloat in client
types.

• It can allocate objects of any type without needing to use rebind. Allocating types

other than value_type is common for node-based and other non-vector-like

containers.

• It can allocate objects on any desired alignment boundary. For example, VecInt might

choose to align its data array on a SIMD data boundary.

• It provides member functions to allocate and construct objects in one step.

• It provides a good alternative to type erasure for types that don’t have an allocator
template argument. See P0148 for examples of avoiding allocator type-erasure in
std::function, std::promise, and std::packaged_task.

5 Before and After

The following example shows the part implementation and use of a simple list-of-string class.
The code on the left (before), shows the use of the fully-general allocator model. The code on
the right (after) shows the use of (hard-coded) pmr::polymorphic_allocator<>. In both

cases, exception-safety code in push_front is omitted for simplicity. Although the code on

the left is more general and closer to standard library code, the code on the right is sufficient
for probably 80% of programmers who wish to add the benefits of allocators to their classes.
As you can see, it is much simpler and less error-prone. Of particular note:

• The list class on the right is not a template

• There is no use of std::allocator_traits.

• There is no need to do any rebinding

• Large chunks of boiler-plate code is unnecessary.

Before After

template <class Alloc =

std::allocator<std::string>>

class StringList1

{

 using alloc_traits =

 std::allocator_traits<Alloc>;

public:

 using allocator_type = Alloc;

 using value_type =

 std::basic_string<char,

// List of strings using

polymorphic_allocator<>

class StringList2

{

public:

 using allocator_type =

 std::pmr::polymorphic_allocator<>;

 using value_type =

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2015/p0148r0.pdf

P0339r4: polymorphic_allocator<> as a vocabulary type Page 7 of 11

 std::char_traits<char>,

 typename alloc_traits::

 template rebind_alloc<char>>;

 // It is easy to get the allocator's

 // value_type type wrong! Check it!

 static_assert(std::is_same<

 typename Alloc::value_type,

 value_type>::value,

 "Alloc::value_type is incorrect");

private:

 struct node {

 node* m_next = nullptr;

 union {

 // Non-initialized member

 value_type m_value;

 };

 };

 using node_alloc =

 typename alloc_traits::

 template rebind_alloc<node>;

 node_alloc m_alloc;

 node *m_head = nullptr;

 node *m_tail = nullptr;

public:

 StringList1(const allocator_type& a =

 {})

 : m_alloc(a)

 , m_head(nullptr) { }

 void push_front(const value_type& v) {

 using alloc_node_traits =

 typename alloc_traits::

 template rebind_traits<node>;

 node *n = alloc_node_traits::

 allocate(m_alloc, 1);

 // NOTE: Exception safety elided

 alloc_node_traits::

 construct(m_alloc, &n->m_value,v);

 n->m_next = m_head;

 m_head = n;

 if (! m_tail)

 m_tail = n;

 }

 // ...

};

 std::pmr::string;

private:

 struct node {

 node* m_next = nullptr;

 union {

 // Non-initialized member

 value_type m_value;

 };

 };

 allocator_type m_alloc;

 node *m_head = nullptr;

 node *m_tail = nullptr;

public:

 StringList2(const allocator_type& a =

 {})

 : m_alloc(a)

 , m_head(nullptr) { }

 void push_front(const value_type& v) {

 node *n =

 m_alloc.allocate_object<node>();

 // NOTE: Exception safety elided

 m_alloc.construct(&n->m_value, v);

 n->m_next = m_head;

 m_head = n;

 if (! m_tail)

 m_tail = n;

 }

 // ...

};

int main()

{

 using SaString =

 std::basic_string<char,

 std::char_traits<char>,

 SimpleAlloc<char>>;

int main()

{

P0339r4: polymorphic_allocator<> as a vocabulary type Page 8 of 11

 SimpleAlloc<SaString> sa;

 StringList1<SimpleAlloc<SaString>>

 slst1(sa);

 slst1.push_front("hello");

}

 SimpleResource sr;

 StringList2 slst2(&sr);

 slst2.push_front("goodbye");

}

6 Alternatives Considered

In Jacksonville, LEWG considered changing some or all of the proposed new member
functions for polymorphic_allocator to free functions, instead. The

allocate/deallocate_object and new/delete_object functions, in particular, could be

implemented for any allocator type, not just polymorphic_allocator. There was, however,

insufficient consensus for this change.

P0148 proposed a new type, memory_resource_ptr, which provided many of the benefits

described for polymorphic_allocator<>. The memory_resource_ptr type did not, however,

conform to allocator requirements and did less to smooth the integration of memory_resource

into the allocator ecosystem than does polymorphic_allocator<>. P0148 was withdrawn in

favor of this proposal.

It has been suggested that we create a new class instead of using
polymorphic_allocator<>. However, such a type would need to behave like a

polymorphic_allocator in every way, so the only benefit we saw was, perhaps, a shorter

name. We’ll leave it up to the user to create their own shortened aliases, as desired.

Instead of using byte as the default template parameter for polymorphic_allocator<T>, we

could have used a unique tag type. This might have been a useful direction if we had created
an explicit specialization for polymorphic_allocator<tag_type>, but earlier drafts of this

proposal proved to us that it only complicated the standard language and implementation,
with no significant benefit over the current proposal.

7 Formal Wording

7.1 Document Conventions

All section names and numbers are relative to the February 2018 C++ Working Paper,
N4727.

Existing working paper text is indented and shown in dark blue. Edits to the working paper are shown with

red strikeouts for deleted text and green underlining for inserted text within the indented blue original text.

Comments and rationale mixed in with the proposed wording appears as shaded text.

Requests for LWG opinions and guidance appear with light (yellow) shading. It is expected
that changes resulting from such guidance will be minor and will not delay acceptance of this
proposal in the same meeting at which it is presented.

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2015/p0148r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4727.pdf

P0339r4: polymorphic_allocator<> as a vocabulary type Page 9 of 11

7.2 Definition of polymorphic_allocator<>

In section 23.12.3 [mem.poly.allocator.class], modify the general definition of
polymorphic_allocator<Tp> as follows. Note that this diverges from the C++17 CD but

remains compatible with it:

template <class Tp = byte>

class polymorphic_allocator {

 memory_resource* m_resource; // exposition only

public:

 using value_type = Tp;

 // 23.12.3.1, constructors
 polymorphic_allocator() noexcept;

 polymorphic_allocator(memory_resource* r);

 polymorphic_allocator(const polymorphic_allocator& other) = default;

 template <class U>

 polymorphic_allocator(const polymorphic_allocator<U>& other) noexcept;

 polymorphic_allocator&

 operator=(const polymorphic_allocator& rhs) = delete;

 // 23.12.3.2, member functions
 [[nodiscard]] Tp* allocate(size_t n);

 void deallocate(Tp* p, size_t n);

 void* allocate_bytes(size_t nbytes, size_t alignment = alignof(max_align_t));

 void deallocate_bytes(void* p, size_t nbytes,

 size_t alignment = alignof(max_align_t));

 template <class T>

 T* allocate_object(size_t n = 1);

 template <class T>

 void deallocate_object(T* p, size_t n = 1);

 template <class T, class... CtorArgs>

 T* new_object(CtorArgs&&... ctor_args);

 template <class T>

 void delete_object(T* p);

 template <class T, class... Args>

 void construct(T* p, Args&&... args);

 // Specializations for pair using piecewise construction

 template <class T1, class T2, class... Args1, class... Args2>

 void construct(pair<T1,T2>* p, piecewise_construct_t,

 tuple<Args1...> x, tuple<Args2...> y);

 template <class T1, class T2>

 void construct(pair<T1,T2>* p);

 template <class T1, class T2, class U, class V>

 void construct(pair<T1,T2>* p, U&& x, V&& y);

 template <class T1, class T2, class U, class V>

 void construct(pair<T1,T2>* p, const std::pair<U, V>& pr);

P0339r4: polymorphic_allocator<> as a vocabulary type Page 10 of 11

 template <class T1, class T2, class U, class V>

 void construct(pair<T1,T2>* p, pair<U, V>&& pr);

 template <class T>

 void destroy(T* p);

 polymorphic_allocator select_on_container_copy_construction() const;

 memory_resource* resource() const;

};

Add descriptions for the new member functions in section 23.12.3.2
[mem.poly.allocator.mem] (underline highlighting omitted for ease of reading):

void* allocate_bytes(size_t nbytes, size_t alignment = alignof(max_align_t));

Returns: m_resource->allocate(nbytes, alignment).

void deallocate_bytes(void* p, size_t nbytes,

 size_t alignment= alignof(max_align_t));

Effects: Equivalent to m_resource->deallocate(p, nbytes, alignment).

Throws: Nothing.

template <class T>

 T* allocate_object(size_t n = 1);

Effects: Allocates memory suitable for holding an array of n objects of type T.

Returns: static_cast<T*>(allocate_bytes(n*sizeof(T), alignof(T))).

Note: T is not deduced and must therefore be provided as a template argument.

template <class T>

 void deallocate_object(T* p, size_t n = 1);

Effects: Equivalent to deallocate_bytes(p, n*sizeof(T), alignof(T)).

template <class T, class CtorArgs...>

 T* new_object(CtorArgs&&... ctor_args);

Effects: Allocates and constructs an object of type T as if by

void* p = allocate_object<T>();

try {

 construct(p, std::forward<CtorArgs>(ctor_args)...);

} catch (...) {

 m_resource->deallocate(p, sizeof(T), alignof(T));

 throw;

}

Returns: The address of the newly constructed object (i.e., p).

Note: T is not deduced and must therefore be provided as a template argument.

template <class T>

 void delete_object(T* p);

Effects: Equivalent to destroy(p); deallocate_object(p).

P0339r4: polymorphic_allocator<> as a vocabulary type Page 11 of 11

8 References

P0978 polymorphic_allocator<byte> instead of type-erasure, Pablo Halpern, 2018-04-01.

N4617 Draft Technical Specification, C++ Extensions for Library Fundamentals, Version 2,
Geoffrey Romer, editor, 2016-11-28.

N3916 Polymorphic Memory Resources - r2, Pablo Halpern, 2014-02-14.

P0148 memory_resource_ptr: A Limited Smart Pointer for memory_resource Correctness,

Pablo Halpern and Dietmar Kühl, 2015-10-14.

P0335 Delete operator= for polymorphic_allocator, Pablo Halpern, 2016-05.

https://wg21.link/P0978
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4617.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2014/n3916.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2015/p0148r0.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0335r0.html

