

1

Project: Programming Language C++, Library Working Group
Document number: P0122R7
Date: 2018-03-16
Reply-to: Neil MacIntosh neilmac@fb.com, Stephan T. Lavavej stl@microsoft.com

span: bounds-safe views for sequences of

objects

Contents

Changelog ...2

Changes from R0 ...2

Changes from R1 ...2

Changes from R2 ...2

Changes from R3 ...2

Changes from R4 ...2

Changes from R5 ...3

Changes from R6 ...3

Introduction ..6

Motivation and Scope ...6

Impact on the Standard ..6

Design Decisions ...7

View not container ...7

No configurable view properties ..7

View length and measurement ..7

Value Type Semantics ...8

Range-checking and bounds-safety ..8

Element types and conversions ..9

Element access and iteration ..9

Construction .. 10

Byte representations and conversions .. 10

Comparisons .. 11

Creating sub-spans .. 12

Multidimensional span .. 12

mailto:neilmac@fb.com
mailto:stl@microsoft.com

2

Proposed Wording Changes .. 12

Acknowledgements ... 23

References ... 24

Changelog
Changes from R0

• Changed the name of the type being proposed from array_view to span following feedback from

LEWG at the Kona meeting.

• Removed multidimensional aspects from the proposal. span is now always single-dimension and

contiguous.

• Added details on potential interoperation with the multidimensional view type from P0009 [5].

• Removed functions to convert from span<byte> to span<T> as they are not compatible with type

aliasing rules.

• Introduced dependency on P0257 [6] for definition of byte type, in order to support span as a

method of accessing object representation.

• Added section containing proposed wording for inclusion in the standard.

• Simplified span interface based on reviewer feedback.

Changes from R1
• Added difference_type typedef to span to better support use in template functions.

• Removed const_iterator begin const() and const_iterator end const () members of span based on

LEWG feedback. For a view type like span, the constness of the view is immaterial to the constness

of the element type, the iterator interface of span now reflects that.

• Removed the deletion of constructors that take rvalue-references based on LEWG feedback.

• Added support for construction from const Container&.

Changes from R2
• Wording cleanup: removed const on non-member functions and inappropriate noexcept

specifiers. Improved wording to be clear that the reverse_iterator is not contiguous. Removed

constexpr from as_bytes() and as_writeable_bytes() as it would be illegal. Tidied up effects of

last() overloads and of array/std::array constructors for cases when the array is empty.

• Added back cbegin() and cend() and const_iterator type based on LEWG feedback in Oulu.

• Improved colors.

Changes from R3
• Updated the wording to be differences against N4618.

Changes from R4
• Removed dependency on P0257 now that byte is part of the standard.

• Updated the wording to be differences against N4659.

• Added constructors from unique_ptr, shared_ptr.

3

• Removed unachievable constexpr from as_bytes() and as_writeable_bytes() functions.

Changes from R5
• Removed conversion constructors that took a unique_ptr/shared_ptr argument.

• Added constexpr qualifier to all iterator access functions on span.

• Removed length() and length_bytes() member functions from span. Length() is considered

unnecessary as string_view offers it if users are looking for std::string interface compatibility.

• Removed constructor from span that took a nullptr_t (as per request from LEWG). It does not add

any value beyond the default constructor and may bind in unexpected ways for users.

• Removed move constructor and move assignment operator. They are unnecessary as this is

designed to be a copy-only type.

• Removed redundant “Effects” clause from descriptions of copy constructor and assignment

operator in proposed wording.

• Simplified many member functions descriptions down to an “effects equivalent to” form in

proposed wording.

• Corrected typo in description of as_writeable_bytes() function.

• Added covering statement to synopsis that marks all member functions as having constant time

complexity and removed individual time complexity clauses to proposed wording.

• Added (accidentally-) missing description for cbegin()/cend()/crbegin()/crend() to proposed

wording.

• Removed unnecessary std:: qualification from remove_cv_t() call in proposed wording.

• Corrected definitions of comparison operations to take arguments by-value rather than by-

reference to reflect the design of span as a copy-only type.

• Removed incorrect italicization of byte in proposed wording.

Changes from R6
• Modified wording of subspan<Offset, Count>() to reflect the preferred design: that a fixed-size

span type is returned wherever possible, and a dynamic-size one is returned only as a fallback. So

that, as an example, span<int, 42>.subspan<2>() will return a span<int, 40>.

• Modified wording of “from-container” constructor to reflect a simpler design, as encouraged by

LWG/LEWG. Now the container requirements are just that std::size() and std::data() work for the

container, and that the return of std::data() is convertible to the pointer-type of the span.

• Removed the constructors that took a std::array, as these can be better served via the from-

container constructor now.

• Ensure the from-container constructors are consistently declared with constexpr in the document

• Described the behavior of span::begin() when the span is empty.

• Added updates to wording in Iterators section to ensure that free functions begin(), end(),

empty(), data(), size() are also specialized for span.

• Fixed typos. (Changed by STL, and below.)

• Added deduction guides.

• Marked dynamic_extent as inline.

• Fixed section numbers; this has always been proposed for the Containers clause, now 26.

• Removed comment duplicating [views.span]/1.

4

• Constrained default constructor properly: only zero-fixed-extent and dynamic-extent spans are

default constructible.

• Fixed Throws element of the Container constructors.

• Reordered Container constructor is_same_v check, and changed remove_cvref_t to

remove_cv_t.

• Fixed Container constraint to prevent span<Derived> converting to span<Base>.

• Constrained built-in array constructor, instead of ill-formed enforcement.

• Removed Throws Nothing from built-in array constructor, which is already noexcept.

• Renamed as_writeable_bytes to as_writable_bytes.

• Replaced distance(firstElem, lastElem) with lastElem – firstElem, as they are pointers.

• Changed one occurrence of cont.size() to size(cont).

• Used “valid range” to simplify requirements.

• Simplified “If ptr is null or count is 0” to “If count is 0”.

• Added wording to cbegin() for consistency with begin().

• In the header synopsis, changed as_bytes and as_writable_bytes to use byte instead of char.

• In the class synopsis, removed declarations of as_bytes and as_writable_bytes (which were

missing noexcept).

• The header synopsis now declares the heterogeneous comparisons, which are not repeated in

the class synopsis.

• Added missing template arguments in [span.sub] (copied from return types).

• Changed subspan() to return span<ElementType, Count != dynamic_extent ? Count : (Extent !=

dynamic_extent ? Extent - Offset : Extent)>. This changed Extent – Offset – 1 to Extent – Offset. If

the user asks for a subspan with dynamic Count, but we have a fixed Extent, then we will return

Extent – Offset elements. For example, Extent == 5, Offset == 0 asks for a full subspan; we return

5 – 0 == 5 elements. (Confirmed by Neil)

• Filled in subspan()’s returned span with (data() + Offset, Count != dynamic_extent ? Count :

(Extent != dynamic_extent ? Extent - Offset : size() - Offset)). (Confirmed by Neil)

• Changed the first part of subspan()’s requirement to (Offset >= 0 && Offset <= size()), always

permitting Offset == size(). (Confirmed by Neil)

• Also changed subspan(offset, count)’s first requirement to (offset >= 0 && offset <= size()).

(Confirmed by Neil)

• Changed "sizeof(ElementType) * Extent" to "static_cast<ptrdiff_t>(sizeof(ElementType)) *

Extent" in as_bytes and as_writable_bytes to avoid forbidden narrowing.

• Restored std::array constructors (whose declarations were still present), combined their

specification with the built-in array constructor.

• Changed array<remove_const_t<element_type>, N> to array<value_type, N>. array’s template

parameter shouldn’t be cv-qualified, especially volatile-qualified.

• Marked the built-in array and std::array constructors as noexcept in declaration and definition.

• Dropped “The reverse_iterator type is a random access iterator.” as it is completely redundant

with the specification that uses std::reverse_iterator of the (random-access) iterator type.

• Reworked array constructor constraints (span<Object> shouldn’t be constructible from const

array<Object, N>).

5

• Reworked Container constructor constraints: now it avoids competing with built-in arrays,

std::arrays, and any std::spans (including converting).

• Fixed crbegin/crend’s definitions to use const_reverse_iterator.

• In operator<=(), changed return !(l > r); to return !(r < l); to flatten the callstack.

• For clarity, changed as_bytes() and as_writable_bytes() to call s.size_bytes().

• Changed to returning spans with {} for less verbosity, following as_bytes/as_writable_bytes.

• Changed <class ElementL, ptrdiff_t ExtentL, class ElementR, ptrdiff_t ExtentR> to <class T,

ptrdiff_t X, class U, ptrdiff_t Y> in order to reduce repetitive verbosity.

• Overhauled span’s converting constructor: new constraint supersedes Requires, constructor is

noexcept.

• Added wording to update Annex C, which also forgot <charconv>. (That was C++17 P0067R5

Elementary String Conversions, updated by P0682R1 Repairing Elementary String Conversions as

a Defect Report in Toronto, so the header is part of C++17 and not just C++20.)

• Added to [iterator.range].

• Added <string_view> to [iterator.container]. It has all of size(), empty(), and data().

• Changed “constexpr static” to “static constexpr” which is consistently used in the Standard.

6

Introduction
This paper presents a design for a fundamental vocabulary type span.

The span type is an abstraction that provides a view over a contiguous sequence of objects, the storage

of which is owned by some other object. The design for span presented here provides bounds-safety

guarantees through a combination of compile-time and (configurable) run-time constraints.

The design of the span type discussed in this paper is related to the span previously proposed in N3851

[1] and also draws on ideas in the array_ref and string_ref classes proposed in N3334 [2]. span is closely

related to the generalized, multidimensional memory-access abstraction array_ref described in P0009 [5].

The span proposed here is sufficiently compatible with array_ref that interoperability between the two

types would be simple and well-defined.

While array_ref is proposed by P0009 [5] as a generalized and highly configurable view type that can

address needs for specialized domains such as scientific computing, span is proposed as a simple solution

to the common need for a single-dimensional view over contiguous storage.

Motivation and Scope
The evolution of the standard library has demonstrated that it is possible to design and implement

abstractions in Standard C++ that improve the reliability of C++ programs without sacrificing either

performance or portability. This proposal identifies a new “vocabulary type” for inclusion in the standard

library that enables both high performance and bounds-safe access to contiguous sequences of elements.

This type would also improve modularity, composability, and reuse by decoupling accesses to array data

from the specific container types used to store that data.

These characteristics lead to higher quality programs. Some of the bounds and type safety constraints of

span directly support “correct-by-construction” programming methodology – where errors simply do not

compile. One of the major advantages of span over the common idiom of a “pointer plus length” pair of

parameters is that it provides clearer semantics hints to analysis tools looking to help detect and prevent

defects early in a software development cycle.

Impact on the Standard
This proposal is a pure library extension. It does not require any changes to standard classes, functions,

or headers.

However – if adopted – it may be useful to overload some standard library functions for this new type (an

example would be copy()).

span has been implemented in standard C++ (C++11) and is being successfully used within a commercial

static analysis tool for C++ code as well as commercial office productivity software. An open source,

reference implementation is available at https://github.com/Microsoft/GSL [3].

https://github.com/Microsoft/GSL
https://github.com/Microsoft/GSL

7

Design Decisions
View not container
span is simply a view over another object’s contiguous storage – but unlike array or vector it does not

“own” the elements that are accessible through its interface. An important observation arises from this:

span never performs any free store allocations.

While span is a view, it is not an iterator. You cannot perform increment or decrement operations on it,

nor dereference it.

No configurable view properties
In the related array_ref type described in P0009 [5], properties are used to control policies such as

memory layout (column-major, row-major) and location (on heterogenous memory architectures) for

specific specializations of array_ref. span does not require properties as it is always a simple view over

contiguous storage. Its memory layout and access characteristics are equivalent to those of a built-in

array. This difference should not prevent conversions between array_ref and span instances, it merely

constrains that they could only be available in cases where array_ref properties are compatible with the

characteristics of span.

View length and measurement
The general usage protocol of the span class template supports both static-size (fixed at compile time)

and dynamic-size (provided at runtime) views. The Extent template parameter to span is used to provide

the extent of the span.

constexpr ptrdiff_t dynamic_extent = -1;

The default value for Extent is dynamic_extent: a unique value outside the normal range of lengths (0 to

PTRDIFF_MAX inclusive) reserved to indicate that the length of the sequence is only known at runtime

and must be stored within the span. A dynamic-size span is, conceptually, just a pointer and size field (this

is not an implementation requirement, however).

int* somePointer = new int[someLength];

// Declaring a dynamic-size span

// s will have a dynamic-size specified by someLength at construction

span<int> s { somePointer, someLength };

The type used for measuring and indexing into span is ptrdiff_t. Using a signed index type helps avoid

common mistakes that come from implicit signed to unsigned integer conversions when users employ

integer literals (which are nearly always signed). The use of ptrdiff_t is natural as it is the type used for

pointer arithmetic and array indexing – two operations that span explicitly aims to replace but that an

implementation of span would likely rely upon.

A fixed-size span provides a value for Extent that is between 0 and PTRDIFF_MAX (inclusive). A fixed-size

span requires no storage size overhead beyond a single pointer – using the type system to carry the fixed-

8

length information. This allows span to be an extremely efficient type to use for access to fixed-length

buffers.

int arr[10];

// deduction of size from arrays means that span size is always correct

span<int, 10> s2 { arr }; // fixed-size span of 10 ints

span<int, 20> s3 { arr }; // error: will fail compilation

span<int> s4 { arr }; // dynamic-size span of 10 ints

Value Type Semantics
span is designed as a value type – it is expected to be cheap to construct, copy, move, and use. Users are

encouraged to use it as a pass-by-value parameter type wherever they would have passed a pointer by

value or a container type by reference, such as array or vector.

Conceptually, span is simply a pointer to some storage and a count of the elements accessible via that

pointer. Those two values within a span can only be set via construction or assignment (i.e. all member

functions other than constructors and assignment operators are const). This property makes it easy for

users to reason about the values of a span through the course of a function body.

These value type characteristics also help provide compiler implementations with considerable scope for

optimizing the use of span within programs. For example, span has a trivial destructor, so common ABI

conventions allow it to be passed in registers.

Range-checking and bounds-safety
All accesses to the data encapsulated by a span are conceptually range-checked to ensure they remain

within the bounds of the span. What actually happens as the result of a failure to meet span’s bounds-

safety constraints at runtime is undefined behavior. However, it should be considered effectively fatal to

a program’s ability to continue reliable execution. This is a critical aspect of span’s design, and allows

users to rely on the guarantee that as long as a sequence is accessed via a correctly initialized span, then

its bounds cannot be overrun.

As an example, in the current reference implementation, violating a range-check results by default in a

call to terminate() but can also be configured via build-time mechanisms to continue execution (albeit

with undefined behavior from that point on).

Conversion between fixed-size and dynamic-size span objects is allowed, but with strict constraints that

ensure bounds-safety is always preserved. At least two of these cases can be checked statically by

leveraging the type system. In each case, the following rules assume the element types of the span objects

are compatible for assignment.

1. A fixed-size span may be constructed or assigned from another fixed-size span of equal length.

2. A dynamic-size span may always be constructed or assigned from a fixed-size span.

3. A fixed-size span may always be constructed or assigned from a dynamic-size span. Undefined

behavior will result if the construction or assignment is not bounds-safe. In the reference

9

implementation, for example, this is achieved via a runtime check that results in terminate() on

failure.

Element types and conversions
span must be configured with its element type via the template parameter ValueType, which is required

to be a complete object type that is not an abstract class type. span supports either read-only or mutable

access to the sequence it encapsulates. To access read-only data, the user can declare a span<const T>,

and access to mutable data would use a span<T>.

Construction or assignment between span objects with different element types is allowed whenever it

can be determined statically that the element types are exactly storage-size equivalent (so there is no

difference in the extent of memory being accessed), and that the types can legally be aliased.

As a result of these rules, it is always possible to convert from a span<T> to a span<const T>. It is not

allowed to convert in the opposite direction, from span<const T> to span<T>. This property is extremely

convenient for calling functions that take span parameters.

Element access and iteration
span’s interface for accessing elements is largely similar to that of array. It overloads operator[] for

element access, and offers random access iterators, making it adoptable with a minimum of source

changes in code that previously used an array, an array object, or a pointer to access more than one

object. span also overloads operator() for element access, to provide compatibility with code written to

operate against view.

span provides random-access iterators over its data, comparable to vector and array. All accesses to

elements made through these iterators are range-checked (subject to configuration as previously

described), just as if they had been performed via the subscript operator on span. There is no difference

in the mutability of the iterators returned from a const or non-const span as the constness of the element

type is already determined when the span is created. As is appropriate for a view, whether the span itself

is const does not affect the element type, and this is reflected in the simplicity of the iterator model.

 // [span.elem], span element access

 constexpr reference operator[](index_type idx) const;

 constexpr reference operator()(index_type idx) const;

 constexpr pointer data() const noexcept;

 // [span.iter], span iterator support

 constexpr iterator begin() const noexcept;

 constexpr iterator end() const noexcept;

 constexpr const_iterator cbegin() const noexcept;

 constexpr const_iterator cend() const noexcept;

 constexpr reverse_iterator rbegin() const noexcept;

 constexpr reverse_iterator rend() const noexcept;

 constexpr const_reverse_iterator crbegin() const noexcept;

 constexpr const_reverse_iterator crend() const noexcept;

10

Construction
The span class is expected to become a frequently used vocabulary type in function interfaces (as a safer

replacement of “(pointer, length)” idioms), as it specifies a minimal set of requirements for safely

accessing a sequence of objects and decouples a function that needs to access a sequence from the details

of the storage that holds such elements.

To simplify use of span as a simple parameter, span offers a number of constructors for common container

types that store contiguous sequences of elements. A summarized extract from the specification

illustrates this:

 // [span.cons], span constructors, copy, assignment, and destructor

 constexpr span();

 constexpr span(pointer ptr, index_type count);

 constexpr span(pointer firstElem, pointer lastElem);

 template <size_t N>

 constexpr span(element_type (&arr)[N]);

 template <size_t N>

 constexpr span(array<remove_const_t<element_type>, N>& arr);

 template <size_t N>

 constexpr span(const array<remove_const_t<element_type>, N>& arr);

 template <class Container>

 constexpr span(Container& cont);

 template <class Container>

 constexpr span(const Container& cont);

 constexpr span(const span& other) noexcept = default;

 template <class OtherElementType, ptrdiff_t OtherExtent>

 constexpr span(const span<OtherElementType, OtherExtent>& other);

It is allowed to construct a span from the null pointer, and this creates an object with .size() == 0. Any

attempt to construct a span with a null pointer value and a non-zero length is considered a range-check

error.

Byte representations and conversions
A span of any element type that is a standard-layout type can be converted to a span<const byte> or a

span<byte> via the free functions as_bytes() and as_writeable_bytes() respectively. These operations are

considered useful for systems programming where byte-oriented access for serialization and data

transmission is essential.

// [span.objectrep], views of object representation

template <class ElementType, ptrdiff_t Extent>

 span<const byte, ((Extent == dynamic_extent) ? dynamic_extent :

(sizeof(ElementType) * Extent))> as_bytes(span<ElementType, Extent> s)

noexcept;

template <class ElementType, ptrdiff_t Extent>

11

 span<byte, ((Extent == dynamic_extent) ? dynamic_extent :

(sizeof(ElementType) * Extent))> as_writeable_bytes(span<ElementType, Extent>

) noexcept;

These byte-representation conversions still preserve const-correctness, however. It is not possible to

convert from a span<const T> be converted to a span<byte> (through SFINAE overload restriction).

Comparisons
span supports all the same comparison operations as a sequential standard library container: element-

wise comparison and a total ordering by lexicographical comparison. This helps make it an effective

replacement for existing uses of sequential contiguous container types like array or vector.

// [span.comparison], span comparison operators

template <class ElementL, ptrdiff_t ExtentL,

class ElementR, ptrdiff_t ExtentR>

 constexpr bool operator==(span<ElementL, ExtentL> l, span<ElementR, ExtentR>

r);

template <class ElementL, ptrdiff_t ExtentL,

class ElementR, ptrdiff_t ExtentR>

 constexpr bool operator!=(span<ElementL, ExtentL> l, span<ElementR, ExtentR>

r);

template <class ElementL, ptrdiff_t ExtentL,

class ElementR, ptrdiff_t ExtentR>

 constexpr bool operator<(span<ElementL, ExtentL> l, span<ElementR, ExtentR>

r);

template <class ElementL, ptrdiff_t ExtentL,

class ElementR, ptrdiff_t ExtentR>

 constexpr bool operator<=(span<ElementL, ExtentL> l, span<ElementR, ExtentR>

r);

template <class ElementL, ptrdiff_t ExtentL,

class ElementR, ptrdiff_t ExtentR>

 constexpr bool operator>(span<ElementL, ExtentL> l, span<ElementR, ExtentR>

r);

template <class ElementL, ptrdiff_t ExtentL,

class ElementR, ptrdiff_t ExtentR>

 constexpr bool operator>=(span<ElementL, ExtentL> l, span<ElementR, ExtentR>

r);

Regardless of whether they contain a valid pointer or null pointer, zero-length spans are all considered

equal. This is considered a useful property when writing library code. If users wish to distinguish between

a zero-length span with a valid pointer value and a span containing the null pointer, then they can do so

by calling the data() member function and examining the pointer value directly.

12

Creating sub-spans
span offers convenient member functions for generating a new span that is a reduced view over its

sequence. In each case, the newly constructed span is returned by value from the member function. As

the design requires bounds-safety, these member functions are guaranteed to either succeed and return

a valid span, or fail with undefined behavior (e.g. calling terminate()) if the parameters were not within

range.

 // [span.sub], span subviews

 constexpr span<element_type, dynamic_extent> first(index_type count) const;

 constexpr span<element_type, dynamic_extent> last(index_type count) const;

 constexpr span<element_type, dynamic_extent> subspan(index_type offset,

index_type count = dynamic_extent) const;

first() returns a new span that is limited to the first N elements of the original sequence. Conversely, last()

returns a new span that is limited to the last N elements of the original sequence. subspan() allows an

arbitrary sub-range within the sequence to be selected and returned as a new span.

All three member functions are overloaded in forms that accept their parameters as template parameters,

rather than function parameters. These overloads are helpful for creating fixed-size span objects from an

original input span, whether fixed- or dynamic-size.

 template <ptrdiff_t Count>

 constexpr span<element_type, Count> first() const;

 template <ptrdiff_t Count>

 constexpr span<element_type, Count> last() const;

 template <ptrdiff_t Offset, ptrdiff_t Count = dynamic_extent>

 constexpr span<element_type, /* see wording */> subspan() const;

Multidimensional span
span as presented here only supports a single-dimension view of a sequence. This covers the most

common usage of contiguous sequences in C++. span has convenience (such as iterators, first(), last(), and

subspan()) and default behaviors that make most sense in a single-dimension.

Adding support for multidimensional and noncontiguous (strided) views of data is deferred to a separate

type not described here. One such candidate would be the more general array_ref facility described in

P0009 [5]. The interface of span is sufficiently compatible with that of array_ref, that users should not

feel any significant discontinuity between the two. In fact, it is entirely possible to implement a span using

array_ref.

Proposed Wording Changes
The following proposed wording changes against the working draft of the standard are relative to N4659

[6].

20.5.1.2 Headers [headers]

2 The C++ standard library provides the C++ library headers, as shown in Table 16.

Table 16 – C++ library headers

13

<algorithm>

<any>

<future>

<initializer_list>

<numeric>

<optional>

<string_view>

<strstream >

<array> <iomanip> <ostream> <system_error>

<atomic> <ios> <queue> <thread>

<bitset> <iosfwd> <random> <tuple>

<chrono> <iostream> <ratio> <type_traits>

<codecvt> <istream> <regex> <typeindex>

<complex> <iterator> <scoped_allocator> <typeinfo>

<condition_variable> <limits> <set> <unordered_map>

<deque> <list> <shared_mutex> <unordered_set>

<exception>

<execution>

<filesystem>

<locale>

<map>

<memory>

<sstream>

<stack>

<utility>

<valarray>

<variant>

<forward_list>

<fstream>

<functional>

<memory_resources>

<mutex>

<new>

<stdexcept>

<streambuf>

<string>

<vector>

26 Containers library [containers]

26.1 General [containers.general]

2 The following subclauses describe container requirements, and components for sequence containers,

associative containers, and views as summarized in Table 82.

Table 82 – Containers library summary

Subclause Header(s)

26.2 Requirements

26.3 Sequence containers <array>

<deque>

<forward_list>

<list>

<vector>

26.4 Associative containers <map>

<set>

26.5 Unordered associative containers <unordered_map>

<unordered_set>

26.6 Container adaptors <queue>

<stack>

26.7 Views

27 Iterators library [iterators]

27.7 Range access [iterator.range]

1 In addition to being available via inclusion of the <iterator> header, the function templates in 27.7

are available when any of the following headers are included: <array>, <deque>, <forward_list>,

<list>, <map>, <regex>, <set>, , <string>, <string_view>, <unordered_map>,

<unordered_set>, and <vector>.

27.8 Container and view access [iterator.container]

14

1 In addition to being available via inclusion of the <iterator> header, the function templates in 27.8

are available when any of the following headers are included: <array>, <deque>, <forward_list>,

<list>, <map>, <regex>, <set>, , <string>, <string_view>, <unordered_map>,

<unordered_set>, and <vector>.

26.7 Views [views]

26.7.1 General [views.general]

1 The header defines the view span. A span is a view over a contiguous sequence of objects, the

storage of which is owned by some other object.

Header synopsis

namespace std {

// constants

inline constexpr ptrdiff_t dynamic_extent = -1;

// [views.span], class template span

template <class ElementType, ptrdiff_t Extent = dynamic_extent>

class span;

// [span.comparison], span comparison operators

template <class T, ptrdiff_t X, class U, ptrdiff_t Y>

 constexpr bool operator==(span<T, X> l, span<U, Y> r);

template <class T, ptrdiff_t X, class U, ptrdiff_t Y>

 constexpr bool operator!=(span<T, X> l, span<U, Y> r);

template <class T, ptrdiff_t X, class U, ptrdiff_t Y>

 constexpr bool operator<(span<T, X> l, span<U, Y> r);

template <class T, ptrdiff_t X, class U, ptrdiff_t Y>

 constexpr bool operator<=(span<T, X> l, span<U, Y> r);

template <class T, ptrdiff_t X, class U, ptrdiff_t Y>

 constexpr bool operator>(span<T, X> l, span<U, Y> r);

template <class T, ptrdiff_t X, class U, ptrdiff_t Y>

 constexpr bool operator>=(span<T, X> l, span<U, Y> r);

// [span.objectrep], views of object representation

template <class ElementType, ptrdiff_t Extent>

 span<const byte, ((Extent == dynamic_extent) ? dynamic_extent :

(static_cast<ptrdiff_t>(sizeof(ElementType)) * Extent))>

as_bytes(span<ElementType, Extent> s) noexcept;

template <class ElementType, ptrdiff_t Extent>

15

 span<byte, ((Extent == dynamic_extent) ? dynamic_extent :

(static_cast<ptrdiff_t>(sizeof(ElementType)) * Extent))>

as_writable_bytes(span<ElementType, Extent> s) noexcept;

} // namespace std

26.7.2 Class template span [views.span]

1 A span is a view over a contiguous sequence of objects, the storage of which is owned by some other

object.

2 ElementType is required to be a complete object type that is not an abstract class type.

3 If Extent < dynamic_extent, the program is ill-formed.

4 The iterator type for span is a random access iterator and contiguous iterator.

5 All member functions of span have constant time complexity.

namespace std {

template <class ElementType, ptrdiff_t Extent = dynamic_extent>

class span {

public:

 // constants and types

 using element_type = ElementType;

 using value_type = remove_cv_t<ElementType>;

 using index_type = ptrdiff_t;

 using difference_type = ptrdiff_t;

 using pointer = element_type*;

 using reference = element_type&;

 using iterator = /* implementation-defined */;

 using const_iterator = /* implementation-defined */;

 using reverse_iterator = std::reverse_iterator<iterator>;

 using const_reverse_iterator = std::reverse_iterator<const_iterator>;

 static constexpr index_type extent = Extent;

 // [span.cons], span constructors, copy, assignment, and destructor

 constexpr span() noexcept;

 constexpr span(pointer ptr, index_type count);

 constexpr span(pointer firstElem, pointer lastElem);

 template <size_t N>

 constexpr span(element_type (&arr)[N]) noexcept;

 template <size_t N>

 constexpr span(array<value_type, N>& arr) noexcept;

 template <size_t N>

 constexpr span(const array<value_type, N>& arr) noexcept;

 template <class Container>

 constexpr span(Container& cont);

 template <class Container>

16

 constexpr span(const Container& cont);

 constexpr span(const span& other) noexcept = default;

 template <class OtherElementType, ptrdiff_t OtherExtent>

 constexpr span(const span<OtherElementType, OtherExtent>& s) noexcept;

 ~span() noexcept = default;

 constexpr span& operator=(const span& other) noexcept = default;

 // [span.sub], span subviews

 template <ptrdiff_t Count>

 constexpr span<element_type, Count> first() const;

 template <ptrdiff_t Count>

 constexpr span<element_type, Count> last() const;

 template <ptrdiff_t Offset, ptrdiff_t Count = dynamic_extent>

 constexpr span<element_type, /* see below */> subspan() const;

 constexpr span<element_type, dynamic_extent> first(index_type count)

const;

 constexpr span<element_type, dynamic_extent> last(index_type count)

const;

 constexpr span<element_type, dynamic_extent> subspan(index_type offset,

index_type count = dynamic_extent) const;

 // [span.obs], span observers

 constexpr index_type size() const noexcept;

 constexpr index_type size_bytes() const noexcept;

 constexpr bool empty() const noexcept;

 // [span.elem], span element access

 constexpr reference operator[](index_type idx) const;

 constexpr reference operator()(index_type idx) const;

 constexpr pointer data() const noexcept;

 // [span.iterators], span iterator support

 constexpr iterator begin() const noexcept;

 constexpr iterator end() const noexcept;

 constexpr const_iterator cbegin() const noexcept;

 constexpr const_iterator cend() const noexcept;

 constexpr reverse_iterator rbegin() const noexcept;

 constexpr reverse_iterator rend() const noexcept;

 constexpr const_reverse_iterator crbegin() const noexcept;

 constexpr const_reverse_iterator crend() const noexcept;

private:

 pointer data_; // exposition only

 index_type size_; // exposition only

};

template<class T, size_t N>

 span(T (&)[N]) -> span<T, N>;

17

template<class T, size_t N>

 span(array<T, N>&) -> span<T, N>;

template<class T, size_t N>

 span(const array<T, N>&) -> span<const T, N>;

template<class Container>

 span(Container&) -> span<typename Container::value_type>;

template<class Container>

 span(const Container&) -> span<const typename Container::value_type>;

} // namespace std

 26.7.2.1 span constructors, copy, assignment, and destructor [span.cons]

 constexpr span() noexcept;

Remarks: This constructor shall not participate in overload resolution unless Extent <= 0 is true.

Effects: Constructs an empty span.

Postconditions: size() == 0 && data() == nullptr

 constexpr span(pointer ptr, index_type count);

Requires: [ptr, ptr + count) shall be a valid range. If extent is not equal to dynamic_extent,

then count shall be equal to extent.

Effects: Constructs a span that is a view over the range [ptr, ptr + count). If count is 0 then an

empty span is constructed.

Postconditions: size() == count && data() == ptr

Throws: Nothing.

 constexpr span(pointer firstElem, pointer lastElem);

Requires: [firstElem, lastElem) shall be a valid range. If extent is not equal to dynamic_extent,

then lastElem - firstElem shall be equal to extent.

Effects: Constructs a span that is a view over the range [firstElem, lastElem). If lastElem -

firstElem == 0 then an empty span is constructed.

Postconditions: size() == lastElem - firstElem && data() == firstElem

18

Throws: Nothing.

 template <size_t N>

 constexpr span(element_type (&arr)[N]) noexcept;

 template <size_t N>

 constexpr span(array<value_type, N>& arr) noexcept;

 template <size_t N>

 constexpr span(const array<value_type, N>& arr) noexcept;

Remarks: These constructors shall not participate in overload resolution unless:

• extent == dynamic_extent || N == extent is true, and

• remove_pointer_t<decltype(data(arr))>(*)[] is convertible to ElementType(*)[].

Effects: Constructs a span that is a view over the supplied array.

Postconditions: size() == N && data() == data(arr)

template <class Container>

 constexpr span(Container& cont);

template <class Container>

 constexpr span(const Container& cont);

Remarks: These constructors shall not participate in overload resolution unless:

- Container is not a specialization of span,

- Container is not a specialization of array,
- is_array_v<Container> is false,

- data(cont) and size(cont) are both well-formed, and

- remove_pointer_t<decltype(data(cont))>(*)[] is convertible to

ElementType(*)[].

Requires: [data(cont), data(cont) + size(cont)) shall be a valid range. If extent is not equal

to dynamic_extent, then size(cont) shall be equal to extent.

Effects: Constructs a span that is a view over the range [data(cont), data(cont) + size(cont)).

Postconditions: size() == size(cont) && data() == data(cont)

Throws: What and when data(cont) and size(cont) throw.

 constexpr span(const span& other) noexcept = default;

19

Postconditions: other.size() == size() && other.data() == data()

 template <class OtherElementType, ptrdiff_t OtherExtent>

 constexpr span(const span<OtherElementType, OtherExtent>& s) noexcept;

Remarks: This constructor shall not participate in overload resolution unless:

• Extent == dynamic_extent || Extent == OtherExtent is true,

• OtherElementType(*)[] is convertible to ElementType(*)[].

Effects: Constructs a span that is a view over the range [s.data(), s.data() + s.size()).

Postconditions: size() == s.size() && data() == s.data()

 constexpr span& operator=(const span& other) noexcept = default;

Postconditions: size() == other.size() && data() == other.data()

 26.7.2.2 span subviews [span.sub]

 template <ptrdiff_t Count>

 constexpr span<element_type, Count> first() const;

Requires: Count >= 0 && Count <= size()

Effects: Equivalent to: return { data(), Count };

 template <ptrdiff_t Count>

 constexpr span<element_type, Count> last() const;

Requires: Count >= 0 && Count <= size()

Effects: Equivalent to: return { data() + (size() – Count), Count };

 template <ptrdiff_t Offset, ptrdiff_t Count = dynamic_extent>

 constexpr span<element_type, /* see below */> subspan() const;

Requires: (Offset >= 0 && Offset <= size()) && (Count == dynamic_extent || Count
>= 0 && Offset + Count <= size())

20

Effects: Equivalent to: return span<ElementType, Count != dynamic_extent ? Count :
(Extent != dynamic_extent ? Extent - Offset : dynamic_extent)>(data() + Offset,

Count != dynamic_extent ? Count : (Extent != dynamic_extent ? Extent - Offset

: size() - Offset));

 constexpr span<element_type, dynamic_extent> first(index_type count)

const;

Requires: count >= 0 && count <= size()

Effects: Equivalent to: return { data(), count };

 constexpr span<element_type, dynamic_extent> last(index_type count)

const;

Requires: count >= 0 && count <= size()

Effects: Equivalent to: return { data() + (size() – count), count };

 constexpr span<element_type, dynamic_extent> subspan(index_type offset,

index_type count = dynamic_extent) const;

Requires: (offset >= 0 && offset <= size()) && (count == dynamic_extent || count
>= 0 && offset + count <= size())

Effects: Equivalent to: return { data() + offset, count == dynamic_extent ? size() –
offset : count };

 26.7.2.2 span observers [span.obs]

constexpr index_type size() const noexcept;

Effects: Equivalent to: return size_;

constexpr index_type size_bytes() const noexcept;

Effects: Equivalent to: return size() * sizeof(element_type);

 constexpr bool empty() const noexcept;

21

Effects: Equivalent to: return size() == 0;

 26.7.2.3 span element access [span.elem]

 constexpr reference operator[](index_type idx) const;

 constexpr reference operator()(index_type idx) const;

Requires: idx >= 0 && idx < size()

Effects: Equivalent to: return *(data() + idx);

 constexpr pointer data() const noexcept;

Effects: Equivalent to: return data_;

26.7.2.4 span iterator support [span.iterators]

 constexpr iterator begin() const noexcept;

Returns: An iterator referring to the first element in the span. If empty() is true, then it returns the

same value as end().

 constexpr iterator end() const noexcept;

Returns: An iterator which is the past-the-end value.

 constexpr reverse_iterator rbegin() const noexcept;

Effects: Equivalent to return reverse_iterator(end());

 constexpr reverse_iterator rend() const noexcept;

Returns: Equivalent to: return reverse_iterator(begin());

 constexpr const_iterator cbegin() const noexcept;

22

Returns: A constant iterator referring to the first element in the span. If empty() is true, then it returns

the same value as cend().

 constexpr const_iterator cend() const noexcept;

Returns: A constant iterator which is the past-the-end value.

 constexpr const_reverse_iterator crbegin() const noexcept;

Effects: Equivalent to return const_reverse_iterator(cend()).

 constexpr const_reverse_iterator crend() const noexcept;

Returns: Equivalent to: return const_reverse_iterator(cbegin());

26.7.2.5 span comparison operators [span.comparison]

template <class T, ptrdiff_t X, class U, ptrdiff_t Y>

 constexpr bool operator==(span<T, X> l, span<U, Y> r);

Effects: Equivalent to: return equal(l.begin(), l.end(), r.begin(), r.end());

template <class T, ptrdiff_t X, class U, ptrdiff_t Y>

 constexpr bool operator!=(span<T, X> l, span<U, Y> r);

Effects: Equivalent to: return !(l == r);

template <class T, ptrdiff_t X, class U, ptrdiff_t Y>

 constexpr bool operator<(span<T, X> l, span<U, Y> r);

Effects: Equivalent to: return lexicographical_compare(l.begin(), l.end(), r.begin(),
r.end());

23

template <class T, ptrdiff_t X, class U, ptrdiff_t Y>

 constexpr bool operator<=(span<T, X> l, span<U, Y> r);

Effects: Equivalent to: return !(r < l);

template <class T, ptrdiff_t X, class U, ptrdiff_t Y>

 constexpr bool operator>(span<T, X> l, span<U, Y> r);

Effects: Equivalent to: return (r < l);

template <class T, ptrdiff_t X, class U, ptrdiff_t Y>

 constexpr bool operator>=(span<T, X> l, span<U, Y> r);

Effects: Equivalent to: return !(l < r);

26.7.2.6 views of object representation [span.objectrep]

template <class ElementType, ptrdiff_t Extent>

 span<const byte, ((Extent == dynamic_extent) ? dynamic_extent :

(static_cast<ptrdiff_t>(sizeof(ElementType)) * Extent))>

as_bytes(span<ElementType, Extent> s) noexcept;

Effects: Equivalent to: return { reinterpret_cast<const byte*>(s.data()),

s.size_bytes() };

template <class ElementType, ptrdiff_t Extent>

 span<byte, ((Extent == dynamic_extent) ? dynamic_extent :

(static_cast<ptrdiff_t>(sizeof(ElementType)) * Extent))>

as_writable_bytes(span<ElementType, Extent> s) noexcept;

Remarks: This function shall not participate in overload resolution unless is_const_v<ElementType>

is false.

Effects: Equivalent to: return { reinterpret_cast<byte*>(s.data()), s.size_bytes() };

C.4.8 Clause 20: library introduction [diff.cpp14.library]

1 Affected subclause: 20.5.1.2

24

Change: New headers.

Rationale: New functionality.

Effect on original feature: The following C++ headers are new: <any>, <charconv>, <execution>,

<filesystem>, <memory_resource>, <optional>, <string_view>, and <variant>. Valid C++

2014 code that #includes headers with these names may be invalid in this International Standard.

C.5.4 Clause 20: library introduction [diff.cpp17.library]

1 Affected subclause: 20.5.1.2

Change: New headers.

Rationale: New functionality.

Effect on original feature: The following C++ headers are new: <compare>, , and

<syncstream>. Valid C++ 2017 code that #includes headers with these names may be invalid in this

International Standard.

Acknowledgements
This work has been heavily informed by N3851 (an array_view proposal) and previous discussion amongst

committee members regarding that proposal. Gabriel Dos Reis, Titus Winters and Stephan T. Lavavej

provided invaluable feedback on this document. Thanks to Casey Carter, Daniel Krügler, and Tim Song for

detailed feedback on the wording.

This version of span was designed to support the C++ Core Coding Guidelines [4] and as such, the current

version reflects the input of Herb Sutter, Jim Springfield, Gabriel Dos Reis, Chris Hawblitzel, Gor Nishanov,

and Dave Sielaff. Łukasz Mendakiewicz, Bjarne Stroustrup, Eric Niebler, and Artur Laksberg provided

helpful review of this version of span during its development.

The authors of P0009 were invaluable in discussing how span and array_ref can be compatible and by

doing so support a programming model that is safe and consistent as users move between a single

dimension and multiple dimensions.

References
[1] Łukasz Mendakiewicz, Herb Sutter, “Multidimensional bounds, index and span“, N3851, 2014,

[Online], Available: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3851.pdf.

[2] J. Yasskin, "Proposing array_ref<T> and string_ref", N3334 14 January 2012, [Online], Available:

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3334.html.

[3] Microsoft, “Guideline Support Library reference implementation: span”, 2015, [Online],

Available: https://github.com/Microsoft/GSL

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3851.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3334.html
https://github.com/Microsoft/GSL
https://github.com/Microsoft/GSL

25

[4] Bjarne Stroustrup, Herb Sutter, “C++ Core Coding Guidelines”, 2015, [Online], Available:

https://github.com/isocpp/CppCoreGuidelines

[5] H. Carter Edwards et al., “Polymorphic Multidimensional Array View”, P0009, 2015, [Online],

Available: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0009r0.html

 [6] Richard Smith, “Working Draft: Standard For Programming Language C++”, N4659, 2017, [Online],

Available: http://open-std.org/JTC1/SC22/WG21/docs/papers/2017/n4659.pdf

https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0009r0.html
http://open-std.org/JTC1/SC22/WG21/docs/papers/2017/n4659.pdf

