
Document Number: N4760
Date: 2018-06-24
Revises: N4736
Reply to: Gor Nishanov <gorn@microsoft.com>

Working Draft, C++ Extensions for
Coroutines

Note: this is an early draft. It’s known to be incomplet and incorrekt, and it has lots of bad
formatting.

c© ISO/IEC N4760

Contents
1 Scope 1

2 Normative references 1

3 Terms and definitions 1

4 General 2
4.1 Implementation compliance . 2
4.2 Feature testing . 2
4.3 Program execution . 2

5 Lexical conventions 2
5.11 Keywords . 2

6 Basic concepts 3

7 Standard Conversions 3

8 Expressions 4
8.3 Unary expressions . 4
8.17 Assignment and compound assignment operators . 6
8.19 Constant expressions . 6
8.20 Yield . 6

9 Statements 7
9.5 Iteration statements . 7
9.6 Jump statements . 8

10 Declarations 9
10.1 Specifiers . 9

11 Declarators 9
11.4 Function definitions . 9

12 Classes 12

13 Derived classes 12

14 Member Access Control 12

15 Special member functions 12
15.1 Constructors . 12
15.4 Destructors . 12
15.8 Copying and moving class objects . 13

16 Overloading 13
16.5 Overloaded operators . 13

Contents ii

c© ISO/IEC N4760

17 Templates 14

18 Exception handling 14

19 Preprocessing directives 14

20 Library introduction 15

21 Language support library 16
21.1 General . 16
21.10 Other runtime support . 16
21.11 Coroutines support library . 16

Contents iii

c© ISO/IEC N4760

List of Tables
1 Feature-test macro . 2

19 C++ headers for freestanding implementations . 15

32 Language support library summary . 16

List of Tables iv

c© ISO/IEC N4760

1 Scope [intro.scope]
1 This document describes extensions to the C++ Programming Language (Clause 2) that enable definition of

coroutines. These extensions include new syntactic forms and modifications to existing language semantics.
2 The International Standard, ISO/IEC 14882:2017, provides important context and specification for this

document. This document is written as a set of changes against that specification. Instructions to modify
or add paragraphs are written as explicit instructions. Modifications made directly to existing text from the
International Standard use underlining to represent added text and strikethrough to represent deleted text.

2 Normative references [intro.refs]
1 The following documents are referred to in the text in such a way that some or all of their content constitutes

requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.
—(1.1) ISO/IEC 14882:2017, Programming Languages – C++

ISO/IEC 14882:2017 is hereafter called the C++ Standard. Beginning with Clause 5, all clause and subclause
numbers, titles, and symbolic references in [brackets] refer to the corresponding elements of the C++ Stan-
dard. Clauses 1 through 4 of this document are unrelated to the similarly-numbered clauses and subclauses
of the C++ Standard.

3 Terms and definitions [intro.defs]
No terms and definitions are listed in this document. ISO and IEC maintain terminological databases for
use in standardization at the following addresses:
— ISO Online browsing platform: available at http://www.iso.org/obp

— IEC Electropedia: available at http://www.electropedia.org/

Terms and definitions 1

http://www.iso.org/obp
http://www.electropedia.org/

c© ISO/IEC N4760

4 General [intro]
4.1 Implementation compliance [intro.compliance]
Conformance requirements for this specification shall be the same as those defined in subclause 1.4 of the
C++ Standard. [Note: Conformance is defined in terms of the behavior of programs. —end note]

4.2 Feature testing [intro.features]
An implementation that provides support for this document shall define the feature test macro in Table 1.

Table 1 — Feature-test macro
Name Value Header

__cpp_coroutines 201803 predeclared

4.3 Program execution [intro.execution]
In subclause 4.6 of the C++ Standard modify paragraph 6 to read:

7 An instance of each object with automatic storage duration (6.7.3) is associated with each entry
into its block. Such an object exists and retains its last-stored value during the execution of the
block and while the block is suspended (by a call of a function, suspension of a coroutine (8.3.8),
or receipt of a signal).

5 Lexical conventions [lex]
5.11 Keywords [lex.key]
Add the keywords co_await, co_yield, and co_return to Table 5 "Keywords".

§ 5.11 2

c© ISO/IEC N4760

6 Basic concepts [basic]
6.6.1 Main function [basic.start.main]
Add underlined text to paragraph 3.

3 The function main shall not be used within a program. The linkage (6.5) of main is implementation-
defined. A program that defines main as deleted or that declares main to be inline, static, or
constexpr is ill-formed. The function main shall not be a coroutine (11.4.4). ...

6.7.4.1 Allocation functions [basic.stc.dynamic.allocation]
Modify paragraph 4 as follows:

4

A global allocation function is only called as the result of a new expression (8.3.4), or called di-
rectly using the function call syntax (8.2.2), or called indirectly to allocate storage for a coroutine
frame (11.4.4), or called indirectly through calls to the functions in the C++ standard library.
[Note: In particular, a global allocation function is not called to allocate storage for objects with
static storage duration (6.7.1), for objects or references with thread storage duration (6.7.2), for
objects of type std::type_info (8.2.8), or for an exception object (18.1). —end note]

7 Standard Conversions [conv]
No changes are made to Clause 7 of the C++ Standard.

Standard Conversions 3

c© ISO/IEC N4760

8 Expressions [expr]
8.3 Unary expressions [expr.unary]
Add await-expression to the grammar production unary-expression:

unary-expression:
postfix-expression
++ cast-expression
-- cast-expression
await-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-id)
sizeof ... (identifier)
alignof (type-id)
noexcept-expression
new-expression
delete-expression

8.3.8 Await [expr.await]
Add this subclause to 8.3.

1 The co_await expression is used to suspend evaluation of a coroutine (11.4.4) while awaiting
completion of the computation represented by the operand expression.

await-expression:
co_await cast-expression

2 An await-expression shall appear only in a potentially-evaluated expression within the compound-
statement of a function-body outside of a handler (Clause 18). In a declaration-statement or in
the simple-declaration (if any) of a for-init-statement, an await-expression shall appear only in
an initializer of that declaration-statement or simple-declaration. An await-expression shall not
appear in a default argument (11.3.6). A context within a function where an await-expression
can appear is called a suspension context of the function.

3 Evaluation of an await-expression involves the following auxiliary types, expressions, and objects:
—(3.1) p is an lvalue naming the promise object (8.4.4) of the enclosing coroutine and P is the type

of that object.
—(3.2) a is the cast-expression if the await-expression was implicitly produced by a yield-expression

(8.20), an initial suspend point, or a final suspend point (11.4.4). Otherwise, the unqualified-
id await_transform is looked up within the scope of P by class member access lookup
(6.4.5), and if this lookup finds at least one declaration, then a is
p.await_transform(cast-expression); otherwise, a is the cast-expression.

—(3.3) o is determined by enumerating the applicable operator co_await functions for an argu-
ment a (16.3.1.2), and choosing the best one through overload resolution (16.3). If overload
resolution is ambiguous, the program is ill-formed. If no viable functions are found, o is a.
Otherwise, o is a call to the selected function.

—(3.4) e is a temporary object copy-initialized from o if o is a prvalue; otherwise e is an lvalue
referring to the result of evaluating o.

§ 8.3.8 4

c© ISO/IEC N4760

—(3.5) h is an object of type std::experimental::coroutine_handle<P> referring to the enclo-
sing coroutine.

—(3.6) await-ready is the expression e.await_ready(), contextually converted to bool.
—(3.7) await-suspend is the expression e.await_suspend(h), which shall be a prvalue of type void,

bool, or std::experimental::coroutine_handle<Z> for some type Z.
—(3.8) await-resume is the expression e.await_resume().

4 The await-expression has the same type and value category as the await-resume expression.
5 The await-expression evaluates the await-ready expression, then:

—(5.1) If the result is false, the coroutine is considered suspended. Then, the await-suspend
expression is evaluated. If that expression has type std::experimental::coroutine_-
handle<Z> and evaluates to a value s, the coroutine referred to by s is resumed as if by a call
s.resume(). [Note: Any number of coroutines may be successively resumed in this fashion,
eventually returning control flow to the current coroutine caller or resumer (11.4.4). —end
note] If that expression has type bool and evaluates to false, the coroutine is resumed.
If that expression exits via an exception, the exception is caught, the coroutine is resumed,
and the exception is immediately re-thrown (18.1). Otherwise, control flow returns to the
current coroutine caller or resumer (11.4.4) without exiting any scopes (9.6).

—(5.2) If the result is true, or when the coroutine is resumed, the await-resume expression is
evaluated, and its result is the result of the await-expression.

6 [Example:
template <typename T>
struct my_future {

...
bool await_ready();
void await_suspend(std::experimental::coroutine_handle<>);
T await_resume();

};

template <class Rep, class Period>
auto operator co_await(std::chrono::duration<Rep, Period> d) {

struct awaiter {
std::chrono::system_clock::duration duration;
...
awaiter(std::chrono::system_clock::duration d) : duration(d){}
bool await_ready() const { return duration.count() <= 0; }
void await_resume() {}
void await_suspend(std::experimental::coroutine_handle<> h){...}

};
return awaiter{d};

}

using namespace std::chrono;

my_future<int> h();

my_future<void> g() {
std::cout << "just about go to sleep...\n";
co_await 10ms;
std::cout << "resumed\n";
co_await h();

§ 8.3.8 5

c© ISO/IEC N4760

}

auto f(int x = co_await h()); // error: await-expression outside of function suspension context
int a[] = { co_await h() }; // error: await-expression outside of function suspension context

—end example]

8.17 Assignment and compound assignment operators [expr.ass]
Add yield-expression to the grammar production assignment-expression.

assignment-expression:
conditional-expression
logical-or-expression assignment-operator initializer-clause
throw-expression
yield-expression

8.19 Constant expressions [expr.const]
Add bullets prohibiting await-expression and yield-expression to paragraph 2.

— an await-expression (8.3.8);
— a yield-expression (8.20);

8.20 Yield [expr.yield]
Add a new subclause to Clause 8.

yield-expression:
co_yield assignment-expression
co_yield braced-init-list

1 A yield-expression shall appear only within a suspension context of a function (8.3.8). Let e
be the operand of the yield-expression and p be an lvalue naming the promise object of the
enclosing coroutine (11.4.4), then the yield-expression is equivalent to the expression co_await
p.yield_value(e).
[Example:

template <typename T>
struct my_generator {

struct promise_type {
T current_value;
...
auto yield_value(T v) {

current_value = std::move(v);
return std::experimental::suspend_always{};

}
};
struct iterator { ... };
iterator begin();
iterator end();

};

my_generator<pair<int,int>> g1() {
for (int i = i; i < 10; ++i) co_yield {i,i};

}
my_generator<pair<int,int>> g2() {

for (int i = i; i < 10; ++i) co_yield make_pair(i,i);

§ 8.20 6

c© ISO/IEC N4760

}

auto f(int x = co_yield 5); // error: yield-expression outside of function suspension context
int a[] = { co_yield 1 }; // error: yield-expression outside of function suspension context

int main() {
auto r1 = g1();
auto r2 = g2();
assert(std::equal(r1.begin(), r1.end(), r2.begin(), r2.end()));

}

—end example]

9 Statements [stmt.stmt]
9.5 Iteration statements [stmt.iter]
Add the underlined text to paragraph 1.

1 Iteration statements specify looping.
iteration-statement:

while (condition) statement
do statement while (expression) ;
for (for-init-statement conditionopt; expressionopt) statement
for co_awaitopt (for-range-declaration : for-range-initializer) statement

9.5.4 The range-based for statement [stmt.ranged]
Add the underlined text to paragraph 1.

1 For a range-based for statement of the form
for co_awaitopt (for-range-declaration : for-range-initializer) statement

is equivalent to
{

auto &&__range = for-range-initializer ;
auto __begin = co_awaitopt begin-expr ;
auto __end = end-expr ;
for (; __begin != __end; co_awaitopt ++__begin) {

for-range-declaration = *__begin;
statement

}
}

Insert a new bullet after paragraph 1 bullet 1.
—(1.1) if the for-range-initializer is an expression, it is regarded as if it were surrounded by parent-

heses (so that a comma operator cannot be reinterpreted as delimiting two init-declarators);
—(1.2) co_await is present if and only if it appears immediately after the for keyword;
—(1.3) __range, __begin, and __end are variables defined for exposition only; and ...

Add the following paragraph after paragraph 2.
3 A range-based for statement with co_await shall appear only within a suspension context of a

function (8.3.8).

§ 9.5.4 7

c© ISO/IEC N4760

9.6 Jump statements [stmt.jump]
Add coroutine-return-statement to the grammar production jump-statement:

jump-statement:
break ;
continue ;
return expr-braced-init-listopt;
coroutine-return-statement
goto identifier ;

Add the underlined text to paragraph 2:
2 On exit from a scope (however accomplished), objects with automatic storage duration (6.7.3)

that have been constructed in that scope are destroyed in the reverse order of their construction.
[Note: A suspension of a coroutine (8.3.8) is not considered to be an exit from a scope.
—end note] ...

9.6.3 The return statement [stmt.return]
Add the underlined text to paragraph 2:

2 ... Flowing off the end of a constructor, a destructor, or a function that is not a coroutine with
a cv void return type is equivalent to a return with no operand. Otherwise, flowing off the end
of a function other than main (6.6.1) or a coroutine (11.4.4) results in undefined behavior.

9.6.3.1 The co_return statement [stmt.return.coroutine]
Add this subclause to 9.6.3.

coroutine-return-statement:
co_return expr-or-braced-init-listopt;

1 A coroutine returns to its caller or resumer (11.4.4) by the co_return statement or when sus-
pended (8.3.8). A coroutine shall not return to its caller or resumer by a return statement
(9.6.3).

2 The expr-braced-init-list of a co_return statement is called its operand. Let p be an lvalue
naming the coroutine promise object (11.4.4) and P be the type of that object, then a co_-
return statement is equivalent to:

{ S; goto final_suspend; }

where final_suspend is as defined in 11.4.4 and S is defined as follows:
—(2.1) S is p.return_value(expr-or-braced-init-list), if the operand is a braced-init-list or an

expression of non-void type;
—(2.2) S is { expressionopt ; p.return_void(); }, otherwise;

S shall be a prvalue of type void.
3 If p.return_void() is a valid expression, flowing off the end of a coroutine is equivalent to a

co_return with no operand; otherwise flowing off the end of a coroutine results in undefined
behavior.

§ 9.6.3.1 8

c© ISO/IEC N4760

10 Declarations [dcl.dcl]
10.1 Specifiers [dcl.spec]
10.1.5 The constexpr specifier [dcl.constexpr]
Insert a new bullet after paragraph 3 bullet 1.

3 The definition of a constexpr function shall satisfy the following constraints:
—(3.1) it shall not be virtual (13.3);
—(3.2) it shall not be a coroutine (11.4.4);
—(3.3) . . .

10.1.6.4 auto specifier [dcl.spec.auto]
Add the following paragraph.

15 A function declared with a return type that uses a placeholder type shall not be a coroutine
(11.4.4).

11 Declarators [dcl.decl]
11.4 Function definitions [dcl.fct.def]
11.4.4 Coroutines [dcl.fct.def.coroutine]
Add this subclause to 11.4.

1 A function is a coroutine if it contains a coroutine-return-statement (9.6.3.1), an await-expression
(8.3.8), a yield-expression (8.20), or a range-based for (9.5.4) with co_await. The parameter-
declaration-clause of the coroutine shall not terminate with an ellipsis that is not part of a
parameter-declaration.

2 [Example:
task<int> f();

task<void> g1() {
int i = co_await f();
std::cout << "f() => " << i << std::endl;

}

template <typename... Args>
task<void> g2(Args&&...) { // OK: ellipsis is a pack expansion

int i = co_await f();
std::cout << "f() => " << i << std::endl;

}

task<void> g3(int a, ...) { // error: variable parameter list not allowed
int i = co_await f();
std::cout << "f() => " << i << std::endl;

}

§ 11.4.4 9

c© ISO/IEC N4760

—end example]
3 For a coroutine f that is a non-static member function, let P1 denote the type of the impli-

cit object parameter (16.3.1) and P2 ... Pn be the types of the function parameters; other-
wise let P1 ... Pn be the types of the function parameters. Let p1 ... pn be lvalues deno-
ting those objects. Let R be the return type and F be the function-body of f, T be the type
std::experimental::coroutine_traits<R,P1,...,Pn>, and P be the class type denoted by
T::promise_type. Then, the coroutine behaves as if its body were:

{
P p promise-constructor-arguments ;
co_await p.initial_suspend(); // initial suspend point
try { F } catch(...) { p .unhandled_exception(); }

final_suspend :
co_await p.final_suspend(); // final suspend point

}

where an object denoted as p is the promise object of the coroutine and its type P is the promise
type of the coroutine, and promise-constructor-arguments is determined as follows: overload
resolution is performed on a promise constructor call created by assembling an argument list with
lvalues p1 ... pn. If a viable constructor is found (16.3.2), then promise-constructor-arguments is
(p1,...,pn), otherwise promise-constructor-arguments is empty.

4 The unqualified-ids return_void and return_value are looked up in the scope of class P . If
both are found, the program is ill-formed. If the unqualified-id return_void is found, flowing
off the end of a coroutine is equivalent to a co_return with no operand. Otherwise, flowing off
the end of a coroutine results in undefined behavior.

5 When a coroutine returns to its caller, the return value is produced by a call to
p.get_return_object(). A call to a get_return_object is sequenced before the call to
initial_suspend and is invoked at most once.

6 A suspended coroutine can be resumed to continue execution by invoking a resumption member
function (21.11.2.4) of an object of type coroutine_handle<P> associated with this instance
of the coroutine. The function that invoked a resumption member function is called resumer .
Invoking a resumption member function for a coroutine that is not suspended results in undefined
behavior.

7 An implementation may need to allocate additional storage for a coroutine. This storage is
known as the coroutine state and is obtained by calling a non-array allocation function (6.7.4.1).
The allocation function’s name is looked up in the scope of P . If this lookup fails, the allocation
function’s name is looked up in the global scope. If the lookup finds an allocation function in
the scope of P , overload resolution is performed on a function call created by assembling an
argument list. The first argument is the amount of space requested, and has type std::size_-
t. The lvalues p1 ... pn are the succeeding arguments. If no viable function is found (16.3.2),
overload resolution is performed again on a function call created by passing just the amount of
space required as an argument of type std::size_t.

8 The unqualified-id get_return_object_on_allocation_failure is looked up in the scope of
class P by class member access lookup (6.4.5). If a declaration is found, then the result of a
call to an allocation function used to obtain storage for the coroutine state is assumed to return
nullptr if it fails to obtain storage, and if a global allocation function is selected, the ::operator
new(size_t, nothrow_t) form shall be used. If an allocation function returns nullptr, the
coroutine returns control to the caller of the coroutine and the return value is obtained by a call
to P::get_return_object_on_allocation_failure(). The allocation function used in this
case must have a non-throwing noexcept-specification.

§ 11.4.4 10

c© ISO/IEC N4760

[Example:
#include <iostream>
#include <experimental/coroutine>

// ::operator new(size_t, nothrow_t) will be used if allocation is needed
struct generator {

struct promise_type;
using handle = std::experimental::coroutine_handle<promise_type>;
struct promise_type {

int current_value;
static auto get_return_object_on_allocation_failure() { return generator{nullptr}; }
auto get_return_object() { return generator{handle::from_promise(*this)}; }
auto initial_suspend() { return std::experimental::suspend_always{}; }
auto final_suspend() { return std::experimental::suspend_always{}; }
void unhandled_exception() { std::terminate(); }
void return_void() {}
auto yield_value(int value) {

current_value = value;
return std::experimental::suspend_always{};

}
};
bool move_next() { return coro ? (coro.resume(), !coro.done()) : false; }
int current_value() { return coro.promise().current_value; }
generator(generator const&) = delete;
generator(generator && rhs) : coro(rhs.coro) { rhs.coro = nullptr; }
~generator() { if (coro) coro.destroy(); }

private:
generator(handle h) : coro(h) {}
handle coro;

};
generator f() { co_yield 1; co_yield 2; }
int main() {

auto g = f();
while (g.move_next()) std::cout << g.current_value() << std::endl;

}

—end example]
9 The coroutine state is destroyed when control flows off the end of the coroutine or the destroy

member function (21.11.2.4) of an object of type std::experimental::coroutine_handle<P>
associated with this coroutine is invoked. In the latter case objects with automatic storage
duration that are in scope at the suspend point are destroyed in the reverse order of the con-
struction. The storage for the coroutine state is released by calling a non-array deallocation
function (6.7.4.2). If destroy is called for a coroutine that is not suspended, the program has
undefined behavior.

10 The deallocation function’s name is looked up in the scope of P . If this lookup fails, the dealloca-
tion function’s name is looked up in the global scope. If deallocation function lookup finds both a
usual deallocation function with only a pointer parameter and a usual deallocation function with
both a pointer parameter and a size parameter, then the selected deallocation function shall be
the one with two parameters. Otherwise, the selected deallocation function shall be the function
with one parameter. If no usual deallocation function is found, the program is ill-formed. The
selected deallocation function shall be called with the address of the block of storage to be re-
claimed as its first argument. If a deallocation function with a parameter of type std::size_t
is used, the size of the block is passed as the corresponding argument.

§ 11.4.4 11

c© ISO/IEC N4760

11 When a coroutine is invoked, a copy is created for each coroutine parameter. Each such copy
is an object with automatic storage duration that is direct-initialized from an lvalue referring to
the corresponding parameter if the parameter is an lvalue reference, and from an xvalue referring
to it otherwise. A reference to a parameter in the function-body of the coroutine and in the call
to the coroutine promise constructor is replaced by a reference to its copy. The initialization and
destruction of each parameter copy occurs in the context of the called coroutine. Initializations
of parameter copies are sequenced before the call to the coroutine promise constructor and
indeterminately sequenced with respect to each other. The lifetime of parameter copies ends
immediately after the lifetime of the coroutine promise object ends. [Note: If a coroutine has a
parameter passed by reference, resuming the coroutine after the lifetime of the entity referred to
by that parameter has ended is likely to result in undefined behavior. —end note]

12 Classes [class]
No changes are made to Clause 12 of the C++ Standard.

13 Derived classes [class.derived]
No changes are made to Clause 13 of the C++ Standard.

14 Member Access Control [class.access]
No changes are made to Clause 14 of the C++ Standard.

15 Special member functions [special]
15.1 Constructors [class.ctor]
Add new paragraph after paragraph 5.

6 A constructor shall not be a coroutine.

15.4 Destructors [class.dtor]
Add new paragraph after paragraph 16.

17 A destructor shall not be a coroutine.

§ 15.4 12

c© ISO/IEC N4760

15.8 Copying and moving class objects [class.copy]
15.8.3 Copy/move elision [class.copy.elision]
Add a bullet to paragraph 1:

— in a coroutine (11.4.4), a copy of a coroutine parameter can be omitted and references to
that copy replaced with references to the corresponding parameter if the meaning of the
program will be unchanged except for the execution of a constructor and destructor for the
parameter copy object

Modify paragraph 3 as follows:
3 In the following copy-initialization contexts, a move operation might be used instead of a copy

operation:

—(3.1) If the expression in a return or co_return statement (9.6.3) is a (possibly parenthesized)
id-expression that names an object with automatic storage duration declared in the body
or parameter-declaration-clause of the innermost enclosing function or lambda-expression,
or

—(3.2) if the operand of a throw-expression is the name of a non-volatile automatic object (other
than a function or catch-clause parameter) whose scope does not extend beyond the end of
the innermost enclosing try-block (if there is one),

overload resolution to select the constructor for the copy or the return_value overload to call
is first performed as if the object were designated by an rvalue. If the first overload resolution
fails or was not performed, or if the type of the first parameter of the selected constructor or
return_value overload is not an rvalue reference to the object’s type (possibly cv-qualified),
overload resolution is performed again, considering the object as an lvalue. Remark: This two-
stage overload resolution must be performed regardless of whether copy elision will occur. It
determines the constructor or return_value overload to be called if elision is not performed,
and the selected constructor or return_value overload must be accessible even if the call is
elided.

16 Overloading [over]
16.5 Overloaded operators [over.oper]
Add co_await to the list of operators in paragraph 1 before operators () and [].
Add the following paragraph after paragraph 5.

6 The co_await operator is described completely in 8.3.8. The attributes and restrictions found
in the rest of this subclause do not apply to it unless explicitly stated in 8.3.8.

§ 16.5 13

c© ISO/IEC N4760

17 Templates [temp]
No changes are made to Clause 17 of the C++ Standard.

18 Exception handling [except]
No changes are made to Clause 18 of the C++ Standard.

19 Preprocessing directives [cpp]
No changes are made to Clause 19 of the C++ Standard.

Preprocessing directives 14

c© ISO/IEC N4760

20 Library introduction [library]
20.6.1.3 Freestanding implementations [compliance]
Add a row to Table 19 for coroutine support header <experimental/coroutine>.

Table 19 — C++ headers for freestanding implementations

Subclause Header(s)
<ciso646>

21.2 Types <cstddef>
21.3 Implementation properties <cfloat> <limits> <climits>
21.4 Integer types <cstdint>
21.5 Start and termination <cstdlib>
21.6 Dynamic memory management <new>
21.7 Type identification <typeinfo>
21.8 Exception handling <exception>
21.9 Initializer lists <initializer_list>
21.10 Other runtime support <cstdalign> <cstdarg> <cstdbool>
21.11 Coroutines support <experimental/coroutine>
23.15 Type traits <type_traits>
32 Atomics <atomic>

§ 20.6.1.3 15

c© ISO/IEC N4760

21 Language support library
[language.support]
21.1 General [support.general]
Add a row to Table 32 for coroutine support header <experimental/coroutine>.

Table 32 — Language support library summary

Subclause Header(s)
21.2 Types <cstddef>

<limits>
21.3 Implementation properties <climits>

<cfloat>
21.4 Integer types <cstdint>
21.5 Start and termination <cstdlib>
21.6 Dynamic memory management <new>
21.7 Type identification <typeinfo>
21.8 Exception handling <exception>
21.9 Initializer lists <initializer_list>

<csignal>
<csetjmp>
<cstdalign>

21.10 Other runtime support <cstdarg>
<cstdbool>
<cstdlib>
<ctime>

21.11 Coroutines support <experimental/coroutine>

21.10 Other runtime support [support.runtime]
Add underlined text to paragraph 4.

4 The function signature longjmp(jmp_buf jbuf, int val) has more restricted behavior in this
International Standard. A setjmp/longjmp call pair has undefined behavior if replacing the
setjmp and longjmp by catch and throw would invoke any non-trivial destructors for any
automatic objects. A call to setjmp or longjmp has undefined behavior if invoked in a suspension
context of a coroutine (8.3.8).
See also: ISO C 7.10.4, 7.8, 7.6, 7.12.

21.11 Coroutines support library [support.coroutine]
Add this subclause to Clause 21.

1 The header <experimental/coroutine> defines several types providing compile and run-time
support for coroutines in a C++ program.
Header <experimental/coroutine> synopsis

§ 21.11 16

c© ISO/IEC N4760

namespace std {
namespace experimental {
inline namespace coroutines_v1 {

// 21.11.1 coroutine traits
template <class R, class... ArgTypes>

struct coroutine_traits;

// 21.11.2 coroutine handle
template <class Promise = void>

struct coroutine_handle;

// 21.11.3 noop coroutine promise
struct noop_coroutine_promise;
template <> struct coroutine_handle<noop_coroutine_promise>;
// noop coroutine handle
using noop_coroutine_handle = coroutine_handle<noop_coroutine_promise>;

// 21.11.4 noop coroutine
noop_coroutine_handle noop_coroutine() noexcept;

// 21.11.2.6 comparison operators:
constexpr bool operator==(coroutine_handle<> x, coroutine_handle<> y) noexcept;
constexpr bool operator!=(coroutine_handle<> x, coroutine_handle<> y) noexcept;
constexpr bool operator<(coroutine_handle<> x, coroutine_handle<> y) noexcept;
constexpr bool operator>(coroutine_handle<> x, coroutine_handle<> y) noexcept;
constexpr bool operator<=(coroutine_handle<> x, coroutine_handle<> y) noexcept;
constexpr bool operator>=(coroutine_handle<> x, coroutine_handle<> y) noexcept;

// 21.11.5 trivial awaitables
struct suspend_never;
struct suspend_always;

} // namespace coroutines_v1
} // namespace experimental

// 21.11.2.7 hash support:
template <class T> struct hash;
template <class P> struct hash<experimental::coroutine_handle<P>>;

} // namespace std

21.11.1 Coroutine traits [coroutine.traits]
1 This subclause defines requirements on classes representing coroutine traits, and defines the class

template coroutine_traits that satisfies those requirements.

21.11.1.1 Class template coroutine_traits [coroutine.traits.primary]
1 The header <experimental/coroutine> defines the primary template coroutine_traits such

that if ArgTypes is a parameter pack of types and if the qualified-id R::promise_type is valid
and denotes a type (17.9.2), then coroutine_traits<R,ArgTypes...> has the following publicly
accessible member:

using promise_type = typename R::promise_type;

§ 21.11.1.1 17

c© ISO/IEC N4760

Otherwise, coroutine_traits<R,ArgTypes...> has no members.
2 Program defined specializations of this template shall define a publicly accessible nested type

named promise_type.

21.11.2 Class template coroutine_handle [coroutine.handle]
namespace std {
namespace experimental {
inline namespace coroutines_v1 {

template <>
struct coroutine_handle<void>
{

// 21.11.2.1 construct/reset
constexpr coroutine_handle() noexcept;
constexpr coroutine_handle(nullptr_t) noexcept;
coroutine_handle& operator=(nullptr_t) noexcept;

// 21.11.2.2 export/import
constexpr void* address() const noexcept;
constexpr static coroutine_handle from_address(void* addr);

// 21.11.2.3 observers
constexpr explicit operator bool() const noexcept;
bool done() const;

// 21.11.2.4 resumption
void operator()() const;
void resume() const;
void destroy() const;

private:
void* ptr; // exposition only

};

template <class Promise>
struct coroutine_handle : coroutine_handle<>
{

// 21.11.2.1 construct/reset
using coroutine_handle<>::coroutine_handle;
static coroutine_handle from_promise(Promise&);
coroutine_handle& operator=(nullptr_t) noexcept;

// 21.11.2.2 export/import
constexpr static coroutine_handle from_address(void* addr);

// 21.11.2.5 promise access
Promise& promise() const;

};

template <> struct coroutine_handle<noop_coroutine_promise> : coroutine_handle<>
{
// 21.11.2.8 noop observers
constexpr explicit operator bool() const noexcept;
constexpr bool done() const noexcept;

§ 21.11.2 18

c© ISO/IEC N4760

// 21.11.2.9 noop resumption
constexpr void operator()() const noexcept;
constexpr void resume() const noexcept;
constexpr void destroy() const noexcept;

// 21.11.2.10 noop promise access
noop_coroutine_promise& promise() const noexcept;

// 21.11.2.11 noop address
constexpr void* address() const noexcept;

private:
coroutine_handle(unspecified);

};

} // namespace coroutines_v1
} // namespace experimental
} // namespace std

1 Let P be the promise type of a coroutine (11.4.4). An object of type coroutine_handle<P >
is called a coroutine handle and can be used to refer to a suspended or executing coroutine. A
default constructed coroutine_handle object does not refer to any coroutine.

2 If a program declares an explicit or partial specialization of coroutine_handle, the behavior is
undefined.
21.11.2.1 coroutine_handle construct/reset [coroutine.handle.con]

constexpr coroutine_handle() noexcept;
constexpr coroutine_handle(nullptr_t) noexcept;

1 Postconditions: address() == nullptr.
static coroutine_handle from_promise(Promise& p);

2 Requires: p is a reference to a promise object of a coroutine.
3 Returns: A coroutine handle h referring to the coroutine.
4 Postconditions: addressof(h.promise()) == addressof(p).

coroutine_handle& operator=(nullptr_t) noexcept;
5 Postconditions: address() == nullptr.
6 Returns: *this.

21.11.2.2 coroutine_handle export/import [coroutine.handle.export.import]

constexpr void* address() const noexcept;

1 Returns: ptr.
constexpr static coroutine_handle<> coroutine_handle<>::from_address(void* addr);
constexpr static coroutine_handle<Promise> coroutine_handle<Promise>::from_address(void* addr);

2 Requires: addr was obtained via a prior call to address.
3 Postconditions: from_address(address()) == *this.

21.11.2.3 coroutine_handle observers [coroutine.handle.observers]

constexpr explicit operator bool() const noexcept;

1 Returns: address() != nullptr.

§ 21.11.2.3 19

c© ISO/IEC N4760

bool done() const;
2 Requires: *this refers to a suspended coroutine.
3 Returns: true if the coroutine is suspended at its final suspend point, otherwise false.

21.11.2.4 coroutine_handle resumption [coroutine.handle.resumption]

void operator()() const;
void resume() const;

1 Requires: *this refers to a suspended coroutine.
2 Effects: Resumes the execution of the coroutine. If the coroutine was suspended at its final

suspend point, behavior is undefined.
3 [Note: A concurrent resumption of the coroutine via resume, operator(), or destroy may

result in a data race. —end note]
void destroy() const;

4 Requires: *this refers to a suspended coroutine.
5 Effects: Destroys the coroutine (11.4.4).
6 [Note: A concurrent resumption of the coroutine via resume, operator(), or destroy may

result in a data race.

21.11.2.5 coroutine_handle promise access [coroutine.handle.promise]

Promise& promise() const;

1 Requires: *this refers to a coroutine.
2 Returns: A reference to the promise of the coroutine.

21.11.2.6 Comparison operators [coroutine.handle.compare]

constexpr bool operator==(coroutine_handle<> x, coroutine_handle<> y) noexcept;

1 Returns: x.address() == y.address().
constexpr bool operator!=(coroutine_handle<> x, coroutine_handle<> y) noexcept;

2 Returns: !(x == y).
constexpr bool operator<(coroutine_handle<> x, coroutine_handle<> y) noexcept;

3 Returns: less<>()(x.address(), y.address()).
constexpr bool operator>(coroutine_handle<> x, coroutine_handle<> y) noexcept;

4 Returns: (y < x).
constexpr bool operator<=(coroutine_handle<> x, coroutine_handle<> y) noexcept;

5 Returns: !(x > y).
constexpr bool operator>=(coroutine_handle<> x, coroutine_handle<> y) noexcept;

6 Returns: !(x < y).

21.11.2.7 Hash support [coroutine.handle.hash]

template <class P> struct hash<experimental::coroutine_handle<P>>;

1 The specialization is enabled (23.14.15).

§ 21.11.2.7 20

c© ISO/IEC N4760

21.11.2.8 noop_coroutine_handle observers [coroutine.handle.noop.observers]

constexpr explicit operator bool() const noexcept;

1 Returns: true.
constexpr bool done() const noexcept;

2 Returns: false.

21.11.2.9 noop_coroutine_handle resumption [coroutine.handle.noop.resumption]

constexpr void operator()() const noexcept;
constexpr void resume() const noexcept;
constexpr void destroy() const noexcept;

1 Effects: None.
2 Remarks: If noop_coroutine_handle is converted to coroutine_handle<>, calls to operator(),

resume and destroy on that handle will also have no observable effects.

21.11.2.10 noop_coroutine_handle promise access [coroutine.handle.noop.promise]

noop_coroutine_promise& promise() const noexcept;

1 Returns: A reference to the promise object associated with this coroutine handle.

21.11.2.11 noop_coroutine_handle address [coroutine.handle.noop.address]

constexpr void* address() const noexcept;

1 Returns: ptr.
2 Remarks: A noop_coroutine_handle’s ptr is always a non-null pointer value.

21.11.3 Class noop_coroutine_promise [coroutine.promise.noop]

struct noop_coroutine_promise {};

1 The class noop_coroutine_promise defines the promise type for the coroutine referred to
by noop_coroutine_handle (21.11).

21.11.4 Function noop_coroutine [coroutine.noop]

noop_coroutine_handle noop_coroutine() noexcept;

1 Returns: A handle to a coroutine that has no observable effects when resumed or destroyed.
2 Remarks: A handle returned from noop_coroutine may or may not compare equal to a

handle returned from another invocation of noop_coroutine.

21.11.5 Trivial awaitables [coroutine.trivial.awaitables]
The header <experimental/coroutine> defines suspend_never and suspend_always as fol-
lows.

namespace std {
namespace experimental {
inline namespace coroutines_v1 {

struct suspend_never {
constexpr bool await_ready() const noexcept { return true; }
constexpr void await_suspend(coroutine_handle<>) const noexcept {}
constexpr void await_resume() const noexcept {}

};

§ 21.11.5 21

c© ISO/IEC N4760

struct suspend_always {
constexpr bool await_ready() const noexcept { return false; }
constexpr void await_suspend(coroutine_handle<>) const noexcept {}
constexpr void await_resume() const noexcept {}

};

} // namespace coroutines_v1
} // namespace experimental
} // namespace std

§ 21.11.5 22

	1 Scope
	2 Normative references
	3 Terms and definitions
	4 General
	4.1 Implementation compliance
	4.2 Feature testing
	4.3 Program execution

	5 Lexical conventions
	5.11 Keywords

	6 Basic concepts
	6.6.1 Main function
	6.7.4.1 Allocation functions

	7 Standard Conversions
	8 Expressions
	8.3 Unary expressions
	8.3.8 Await

	8.17 Assignment and compound assignment operators
	8.19 Constant expressions
	8.20 Yield

	9 Statements
	9.5 Iteration statements
	9.5.4 The range-based for statement

	9.6 Jump statements
	9.6.3 The return statement
	9.6.3.1 The co_return statement

	10 Declarations
	10.1 Specifiers
	10.1.5 The constexpr specifier
	10.1.6.4 auto specifier

	11 Declarators
	11.4 Function definitions
	11.4.4 Coroutines

	12 Classes
	13 Derived classes
	14 Member Access Control
	15 Special member functions
	15.1 Constructors
	15.4 Destructors
	15.8 Copying and moving class objects
	15.8.3 Copy/move elision

	16 Overloading
	16.5 Overloaded operators

	17 Templates
	18 Exception handling
	19 Preprocessing directives
	20 Library introduction
	20.6.1.3 Freestanding implementations

	21 Language support library
	21.1 General
	21.10 Other runtime support
	21.11 Coroutines support library
	21.11.1 Coroutine traits
	21.11.1.1 Class template coroutine_traits

	21.11.2 Class template coroutine_handle
	21.11.2.1 coroutine_handle construct/reset
	21.11.2.2 coroutine_handle export/import
	21.11.2.3 coroutine_handle observers
	21.11.2.4 coroutine_handle resumption
	21.11.2.5 coroutine_handle promise access
	21.11.2.6 Comparison operators
	21.11.2.7 Hash support
	21.11.2.8 noop_coroutine_handle observers
	21.11.2.9 noop_coroutine_handle resumption
	21.11.2.10 noop_coroutine_handle promise access
	21.11.2.11 noop_coroutine_handle address

	21.11.3 Class noop_coroutine_promise
	21.11.4 Function noop_coroutine
	21.11.5 Trivial awaitables

