
Document Number: P0851R0

Date: 2017-11-06

Reply-to: Matthias Kretz <m.kretz@gsi.de>

Audience: LEWG / SG1

simd<T> is neither a product type nor
a container type

ABSTRACT

This paper provides context to the question on relational operators raised in P0820R0.

CONTENTS

1 Introduction 1
2 Design choices 2
3 Type category of simd<T> 3
4 relational operators 3
5 Some compromise? 6
6 Revisit the name? 6
A Bibliography 6



P0851R0 1 Introduction

Data Set 0

𝑎u�
𝑎u�
𝑎u�

1

𝑏u�
𝑏u�
𝑏u�

2

𝑐u�
𝑐u�
𝑐u�

3

𝑑u�
𝑑u�
𝑑u�

4

𝑒u�
𝑒u�
𝑒u�

5

𝑓u�
𝑓u�
𝑓u�

6

𝑔u�
𝑔u�
𝑔u�

7

ℎu�
ℎu�
ℎu�

horizontal vectorization
vertical

vectorization

Figure 1: horizontal vs. vertical vectorization

1 INTRODUCTION

Shen [P0820R0] presents the view of the simd<T> specification of Kretz [P0214R5] in
light of an existing library implementation for a similar problem. It is motivated by a
different way of using simd types, which is why I’d like to start with an short detour
into vectorization directions.

1.1 vectorization direction

Horizontal same data member from several objects

Vertical different data members from one object 1

As a simple example, consider a scalar product in a 3-dimensional space (cf. Fig-
ure 1). Vertical vectorization takes as input two 3-dimensional vectors and produces a
single value. E.g. it places the 3 components of one input into one SIMD register and
uses the DPPS instruction (on x86) to calculate the dot product. Horizontal vectorizing
takes as input 𝒲T 3-dimensional vectors and produces 𝒲T values. It uses the same
sequence of multiplications and additions, a classical scalar implementation would
use, only applying it to a full SIMD register in parallel.

1.2 choosing direction

In my experience, vertical vectorization is the traditional approach to using short
vector extensions, such as SSE on x86. However, horizontal vectorization is where
the true strength of data-parallel types lies. Horizontal vectorization reduces the
need for reductions (e.g. shuffles) and thus can often yield the full speed-up of the
SIMD vector width. Consequently, the code is easily scalable between targets with
differing 𝒲T.

The major reason for using vertical vectorization is that it can be used in small,
contained areas of the code, typically hidden inside a single function. It is thus not

1 compare with “horizontal marekts” vs. “vertical markets”

1



P0851R0 2 Design choices

apparent from the function signature, that the function uses a SIMD implementation.
This allows localized changes and is much easier to take up in an existing code base.

Horizontal vectorization typically requires a much larger effort on an existing code
base. Because a function, such as the horizontally vectorized scalar product above,
requires the number of inputs and outputs to scale by 𝒲T. Thus, every function
signature changes, and vector types become a major part of the API. Data structure
vectorization and AoVS (array of vectorized struct) become important tools.

2 DESIGN CHOICES

1. The main approach to vectorization is horizontal vectorization.
Rationale: Because horizontal vectorization scales better, and thus produces
better portability and even performance portability.
Note: This does not preclude vertical vectorization. This is only about tailoring
the API on one approach, while keeping the other approach possible.

2. Code that compiles (correctly) on one system compiles (correctly) on all others.
Rationale: Because that’s what everyone may expect of standard C++.
Note: This is not always trivial, considering that simd ::size() differs at compile-
time. Some issues are not preventable, though.

3. The main vector type (simd<T>) is, as much as reasonably possible, a drop-in
replacement for T. This means vectorization of a function may be as simple as
a replacement of float with simd<float>.
Rationale: Make it easy to use and understand by building on top of the funda-
mental types of the language. Generic code that works with built-in arithmetic
types shall be reusable.

4. If the “drop-in replacement” cannot work without more input from the devel-
oper, the code shall not compile. The error message should be as helpful as
possible, though; pointing out the missing “input”.
Rationale: It is dangerous to make assumptions when the intent is not clearly
stated in the code (even if the user knows about them): this leads to hard to
find bugs.
Note: The main issue here is relational operators and branching.

5. Design the API from problems the user has to solve; and to make typical pat-
terns easier to express. Or the inverse: do not simply expose every single spe-
cial purpose instruction a hardware vendor came up with. Find the generality
first.

2



P0851R0 3 Type category of simd<T>

Rationale: The user shall state intent; the library and compiler shall find the
best instructions. This keeps user code readable and maintainable.

3 TYPE CATEGORY OF SIMD<T>

In private discussion with Tim Shen and Titus Winters the question came up whether
simd<T> is a container or a product type. I strongly believe it is neither of those. The
only precedence in the IS for the type category of simd<T> is std::valarray.

3.1 container type

Compare simd<T> and std::array<T>: Both types store a fixed number of values of
type T. However, simd<T> is not a good choice for subscript access. The return type
of simd::operator[] alone should make clear that simd<T> is not a container. While
it does contain values of T, it does not necessarily contain objects of type T. Which
is why the non-const subscript operator returns a smart reference, rather than an
lvalue reference. For the same reason simd<T> does not even support iterators (at
this point). Iterators could never return the required lvalue reference and thus would
have to stick to being InputIterators.

3.2 product type

Is simd<T> a product type then? Or, in other words, has an object of type simd<T> one
value as a whole. (After all that’s where the term “product” in product type stems
from.) The answer to this question differs for users that do vertical vs. horizontal
vectorization. Consider the scalar product example again: In the vertical vectorization
one simd<T> object contains a 3-dim euclidean vector and thus the whole simd<T>
object has “one value”. However, in the case of horizontal vectorization, one simd<T>
object contains 𝒲T values of the 1st, 2nd, or 3rd component of 𝒲T euclidean vectors.
A single simd<T> object has no sensible value as a whole. It really just stores 𝒲T

values.
So is it a product type? According to the design choices, if horizontal and vertical

vectorization disagree, horizontal vectorization is preferred. Thus, simd<T> is not a
product type.

4 RELATIONAL OPERATORS

The type category has important consequences for the definition of relational oper-
ators. If one considers simd<T> a product type, it is reasonable to expect operator==

3



P0851R0 4 relational operators

to return bool. However, when vectorizing horizontally, the only reasonable result for
an equality test is to return one boolean answer per element of the SIMD vector.
Therefore, simd<T> in [P0214R6] returns simd_mask<T>.

4.1 example std::complex

Consider std::complex<simd<float>>. While officially unspecified, at least libstdc++
has a useful implementation that mostly works. Example: https://godbolt.org/g/
fHJemB. However, operations such as abs, require operator== in its implementation.
As of the current spec, this does not compile (https://godbolt.org/g/QiJcZn). If
we were to change operator== to return bool, the code would compile, but not do
the right thing. According to design choice 4, having operator== return bool is a
no-go.

4.2 will extending if to accept masks help?

Lets ignore that we’d ask for a rather narrow language extension, which has low
chances of passing through EWG. Is an extension allowing if (simd_obj0 == simd_-
obj1) foo(); a solution/compromise?

Cilk Plus has implemented write-masking via extending if statements for the array
notation extension (cf. Tutorial: Array Notation | Cilk Plus [1]). Conditional statements
thus do not disable a branch unless all entries of the mask are false (though essen-
tially this is an optional optimization). Instead, all code branches are executed with an
implicit state that determines the disabled vector lanes. Consider the example code
in Listing 1 on a system with 𝒲int = 4 and a = {1, 2, 3, 4}, b = {7, 0, 7, 7}:
The expression a < b returns a mask with 4 boolean values: {true, false, true,
true}. The compiler therefore has to translate the if-branch (line 3) into instructions
that modify a only at the indexes 0, 2, and 3. Subsequently, a will be a = {2, 2, 4,
5}. The else-branch (line 5) then may only modify the SIMD vector entry at index 1.
Thus, a must become a = {2, 1, 4, 5}, which is the return value of the function f.

The code example in Listing 2 is a small modification of the example in Listing 1 that
would be equivalent for scalar types. However, with SIMD vector types both of the
two return statements in the code must be taken. It is certainly possible to define
that this code blends the SIMD vectors from the two return statements according
to the implicit masks in the if and else branches. However, already a seemingly
small change, such as returning an int instead of simd<int> (Listing 3) leads to
unresolvable ambiguity: Should the function return +1 or -1? Similar ambiguity issues
occur with non-complementary masked return statements and function calls inside

4

https://godbolt.org/g/fHJemB
https://godbolt.org/g/fHJemB
https://godbolt.org/g/QiJcZn


P0851R0 4 relational operators

1 simd<int> f(simd<int> a, simd<int> b) {
2 if (a < b) {
3 a += 1;
4 } else {
5 a -= 1;
6 }
7 return a;
8 }

Listing 1: Example code relying on overloaded semantics for if statements with
mask arguments.

1 simd<int> f(simd<int> a, simd<int> b) {
2 if (a < b) {
3 return a + 1;
4 } else {
5 return a - 1;
6 }
7 }

Listing 2: Code example that shows unclear return semantics: both branches must
execute but from where does the function return and what is the return
value?

the branches. Throwing exceptions and locking/unlocking mutexes would even have
to be disallowed altogether.

There is a more fundamental uncertainty resulting from implicit masking via if
statements on SIMD vector masks: How should different SIMD vector types inter-
act? An if statement from simd<int> comparison returns 𝒲int boolean answers. If
the branch contains code with simd<short> or simd<double>, should it be implic-
itly write-masked or not? If yes, how? There is no natural and obvious behavior for
applying write masks of different 𝒲T.

This shows that if statements with non-boolean arguments limit the language
features allowed in the if/else branches. This makes the feature much less intuitive.

1 int f(simd<int> a, simd<int> b) {
2 if (a < b) {
3 return +1;
4 } else {
5 return -1;
6 }
7 }

Listing 3: Code example that shows unresolvable ambiguity: both branches must
execute but there can be only one return value because the return type is
a scalar int.

5



P0851R0 5 Some compromise?

The implicit mask context changes the semantics significantly in different regions of
the source code. And the problem is aggravated if a developer requires else if or
switch statements.

I therefore strongly recommend not to extend if-statements for masking.

5 SOME COMPROMISE?

If the committee feels uneasy to overload relops for simd (returning simd_mask),
the TS could experiment with an opt-in mechanism: Define the relational opera-
tors in a namespace (e.g. std::experimental::simd_relops, or std::experimen-
tal::simd_mask_relops and std::experimental::simd_bool_relops). The user thus
has to select the preferred behavior. My recommendation then would be to drop this
opt-in behavior after TS feedback on this issue was collected.

6 REVISIT THE NAME?

I still believe the name “simd” is potentially misleading, since short vector SIMD in-
structions have traditionally (only) been used for special purpose optimziations and
vertical vectorization. I don’t recommend to reopen the discussion, though.

A BIBLIOGRAPHY

[P0214R5] Matthias Kretz. P0214R5: Data-Parallel Vector Types & Operations. ISO/IEC
C++ Standards Committee Paper. 2017. url: http://www.open- std.org/
jtc1/sc22/wg21/docs/papers/2017/p0214r5.pdf.

[P0214R6] Matthias Kretz. P0214R6: Data-Parallel Vector Types & Operations. ISO/IEC
C++ Standards Committee Paper. 2017. url: http://www.open- std.org/
jtc1/sc22/wg21/docs/papers/2017/p0214r6.pdf.

[P0820R0] Tim Shen. P0820R0: Feedback on P0214R5. ISO/IEC C++ Standards Com-
mittee Paper. 2017. url: https://wg21.link/p0214r0.

[1] Tutorial: Array Notation | Cilk Plus. Intel Corporation. url: https://www.
cilkplus.org/tutorial- array- notation (visited on 01/11/2014).

6

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0214r5.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0214r5.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0214r6.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0214r6.pdf
https://wg21.link/p0214r0
https://www.cilkplus.org/tutorial-array-notation
https://www.cilkplus.org/tutorial-array-notation

	1 Introduction
	1.1 vectorization direction
	1.2 choosing direction

	2 Design choices
	3 Type category of simd<T>
	3.1 container type
	3.2 product type

	4 relational operators
	4.1 Example std::complex
	4.2 will extending if to accept masks help?

	5 Some compromise?
	6 Revisit the name?
	A Bibliography

