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Using	Concepts	and	requires	in	the	C++	
Standard	Library		
 
Because concepts were now adopted (again) as a C++ language feature, this raises the question of how 
to deal with it in the C++ Standard Library. This paper has the intent to come up with corresponding 
guidelines. 

1. Concept	Name	Conventions	

As done in the Ranges TS, standard concept names should be defined with CamelCase. 

For example: 

template <class T> concept bool SignedIntegral() { 

  …; 

}  

2. ABI	Compatibility	

Although the C++ standard does not guarantee ABI compatibility, it is always a goal to be able to have it. 
The reason is that this allows to link together code compiled with different compiler versions. With ABI 
breaks, customers/programmers might otherwise be required to recompile the whole code base. 
 
In principle, requires clauses have to be part of the signature to be able to overload functions having 
different requires clauses only. 
However, in practice this is not a problem with the following constraints: 

 The requires clauses applies to template code only (this implied non-template member 
functions of class templates). 

 The concepts and directly formulated requires clauses are local and stateless. 
o There are no side effects changes in behavior, for example, due to static variables. 

 There is no need/support for full specializations. 
 
To be able to change requires clauses, requires clauses should confirm to the guidelines above. 
 
Let me explain the reason for these constraints. 

Reasoning for Constraints for ABI Compatibility 

First let's look at the current situation regarding possible changes on requirement with enable_if 
clauses by example.  
 
Assume in one translation unit (TU) we have a function template foo() with an enable_if clause: 
 

tu1.cpp: 
emplate<typename T> 
std::enable_if_t<(sizeof(T) >= 4), int> 
foo(T) { 
  std::cout << "foo() for 'std::enable_if_t<(sizeof(T) >= 4)>'\n"; 
  return 42; 
} 
void tu2(); 
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int main() 
{ 
    foo(42ll);  // __Z3fooIxENSt9enable_ifIXgestT_Li4EEiE4typeES1_ 
    tu2(); 
} 

 
The symbol for foo() in tu1.o will contain the condition as part of the return type. 
For example, if you compile with ``g++80 -O0 -c tu1.cpp’’ and check with nm: 
 __Z3fooIxENSt9enable_ifIXgestT_Li4EEiE4typeES1_ 
 
The generic return type “XgestT_Li4EE” (which includes the condition) is part of the signature, and 
therefore part of the ABI. 
 
Now assume we later compile foo() in a different module with a slightly modified clause (now comparing 
the size of T with 8 instead of 4): 
 

tu2.cpp: 
======== 
template<typename T> 
std::enable_if_t<(sizeof(T) >= 8), int> 
foo(T) { 
  std::cout << "foo() for 'std::enable_if_t<(sizeof(T) >= 8)>'\n"; 
  return 42; 
} 
 
void tu2() 
{ 
    foo(42ll);  // __Z3fooIxENSt9enable_ifIXgestT_Li8EEiE4typeES1_ 
} 

 
Now, we we see the modified symbol for foo() in tu2.o: 
 __Z3fooIxENSt9enable_ifIXgestT_Li8EEiE4typeES1_ 
 
Thus, the change breaks the ABI, because the condition being part the symbol changed from 
“XgestT_Li4EE” to “XgestT_Li8EE”. 
 
Nevertheless, we can link the executable using both object files. 
As a result the executable has both symbols: 
 __Z3fooIxENSt9enable_ifIXgestT_Li4EEiE4typeES1_ 
 __Z3fooIxENSt9enable_ifIXgestT_Li8EEiE4typeES1_ 
 
Thus, usually having different requirements with enable_if usually is no problem at all, because 
we use templates, where the call result in inline instantiations of the templates. Any call of foo() is located 
in the same object file as the instantiation and the resulting executable just has both versions of foo() and 
works just fine. The program above outputs: 
 foo() for 'std::enable_if_t<(sizeof(T) >= 4)>' 
 foo() for 'std::enable_if_t<(sizeof(T) >= 8)>' 
 
However, as Daveed Vandevourde comments: “All kinds of things could go wrong, of course, but for 
typical situations they don’t happen.” 
 
For example, if we have a static member in foo(), we suddenly have two different static members, not 
(necessarily) shared. If inside foo() we'd have 
 static int numCalls = 0; 
we'd get two different symbols: 
 00402040 D __ZZ3fooIxENSt9enable_ifIXgestT_Li4EEiE4typeES1_E8numCalls 
 00402044 D __ZZ3fooIxENSt9enable_ifIXgestT_Li8EEiE4typeES1_E8numCalls 
 
 
If we replace the enable_if clause by requires clauses, for template code we have pretty much the 
same behavior: 
If 
 template<typename T> requires (sizeof(T) >= 4) int foo(T); 
becomes 
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 template<typename T> requires (sizeof(T) >= 8) int foo(T); 
and even if we replace 
 template<typename T> std::enable_if_t<(sizeof(T) >= 4), int> foo(T); 
by 
 template<typename T> requires (sizeof(T) >= 8) int foo(T) 
this usually works in practice, because both the call and the instantiation are in the same object file 
provided we don’t have side effects and/or stateful behavior.  
 
But as Jonathan Wakely comment: 

In addition to the local static issue there's an issue with non-template member functions of class 
templates in explicit instantiations. Those can't have enable_if constraints though, so they are 
affected as described below for ordinary functions. 

So, we also have the ability for full specializations into account. 
 
Note1: When trying these examples out with compiler supporting concepts out that gcc you might not see 
yet that the requires clause is part of the name mangling at all, which is a bug and has to get fixed (in 
coordination with all who care for a standard mangling). 

Requires with Non-Template Code 

Originally, require clauses should also be able to be used with ordinary functions: 
 int foo() requires (sizeof(T) >= 4); 
 
In this case, the call and the definition might easily occur in different translation units. And when we 
change the requirement to 
 int foo() requires (sizeof(T) >= 8); 
and only compile the call without compiling the definition again, the linker will search for a function using a 
different name mangling and will fail. 
 
However, in Toronto meeting 2017, CWG seems to have decided that 
CWG decided in Toronto that:  

 Consensus: requires-clauses on non-templated functions are ill-formed 

So, this doesn’t seem to be an issue, yet. 

3. Semantic	Guidelines	

As a third group of guideline let me come up with some proposals regarding the question of when and 
how to define concepts. 

To some extent, this is similar to dealing with patterns. For that reason, let me introduce two new terms 
here: 

 Concept System 
o A set of concepts, which play together to cover a couple of requirements by a consistent 

way and style. 
 Concept Language 

o A concept system, where the concepts depend on and compose each other to form a 
consistent set of concepts being able to help in various contexts. 

The goal for a C++ standard library should be to establish at least a concept system; ideally a concept 
language. 

As a general guideline, Eric Niebler and Casey Carter pointed to an important aspect: 

Concepts should care about semantics, not syntax. Or in other words: concepts should reason about 
what your code means and not whether whether it compiles 

For this reason 

 Not each trait is a useful concept. For example, a trait is_copyable checks whether we can call 
the copy constructor, while a concept IsCopyable means that after a copy (there might be 
different ways to perform it) two objects have the same value. 

 For the same reason, not every STL requirement is necessarily a concept. 
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That means that we still need traits and we still need requires clauses to fix unintended behavior 
(“shall not participate in overload resolution unless…”) without introducing concepts for them. 

In fact: 

 Traits yielding types are never concepts. 
 Traits and enable_if clauses without semantics should not be concepts. 
 Concepts are requirements for humans 

o Concepts can't be generated. 
o There are no high order concepts 

 

For this reason, a better categorization for requirements, as Walter Brown discusses in  P0788R0. 

 

4. Summary	

Here some recommendations I see from the discussion we had so far. 

 Concept names use CamelCase. 
 Concepts and requires clauses should always be predicates (be stateless and return bool). 
 Don’t convert all traits or enable_if clauses into concepts. 
 Use concepts and requires clauses only for template code. 
 Concepts evolve 

o May be: “Three strikes and you conceptify” (if a concept proved to be useful three times 
in three contexts, we should standardize it). 

The good now is that with these rules ABI compatibility is not an issue. Thus, we can fix mistakes.  
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