
N. Josuttis: P0830R0: Using Concepts and requires in the C++ Standard Library

 1

Project: ISO JTC1/SC22/WG21: Programming Language C++
Doc No: WG21 P0830R0
Date: 2017-10-15
Reply to: Nicolai Josuttis (nico@josuttis.de)
Audience: LEWG, LWG?
Prev. Version:

Using	Concepts	and	requires	in	the	C++	
Standard	Library		

Because concepts were now adopted (again) as a C++ language feature, this raises the question of how
to deal with it in the C++ Standard Library. This paper has the intent to come up with corresponding
guidelines.

1. Concept	Name	Conventions	

As done in the Ranges TS, standard concept names should be defined with CamelCase.

For example:

template <class T> concept bool SignedIntegral() {

 …;

}

2. ABI	Compatibility	

Although the C++ standard does not guarantee ABI compatibility, it is always a goal to be able to have it.
The reason is that this allows to link together code compiled with different compiler versions. With ABI
breaks, customers/programmers might otherwise be required to recompile the whole code base.

In principle, requires clauses have to be part of the signature to be able to overload functions having
different requires clauses only.
However, in practice this is not a problem with the following constraints:

 The requires clauses applies to template code only (this implied non-template member
functions of class templates).

 The concepts and directly formulated requires clauses are local and stateless.
o There are no side effects changes in behavior, for example, due to static variables.

 There is no need/support for full specializations.

To be able to change requires clauses, requires clauses should confirm to the guidelines above.

Let me explain the reason for these constraints.

Reasoning for Constraints for ABI Compatibility

First let's look at the current situation regarding possible changes on requirement with enable_if
clauses by example.

Assume in one translation unit (TU) we have a function template foo() with an enable_if clause:

tu1.cpp:
emplate<typename T>
std::enable_if_t<(sizeof(T) >= 4), int>
foo(T) {
 std::cout << "foo() for 'std::enable_if_t<(sizeof(T) >= 4)>'\n";
 return 42;
}
void tu2();

N. Josuttis: P0830R0: Using Concepts and requires in the C++ Standard Library

 2

int main()
{
 foo(42ll); // __Z3fooIxENSt9enable_ifIXgestT_Li4EEiE4typeES1_
 tu2();
}

The symbol for foo() in tu1.o will contain the condition as part of the return type.
For example, if you compile with ``g++80 -O0 -c tu1.cpp’’ and check with nm:
 __Z3fooIxENSt9enable_ifIXgestT_Li4EEiE4typeES1_

The generic return type “XgestT_Li4EE” (which includes the condition) is part of the signature, and
therefore part of the ABI.

Now assume we later compile foo() in a different module with a slightly modified clause (now comparing
the size of T with 8 instead of 4):

tu2.cpp:
========
template<typename T>
std::enable_if_t<(sizeof(T) >= 8), int>
foo(T) {
 std::cout << "foo() for 'std::enable_if_t<(sizeof(T) >= 8)>'\n";
 return 42;
}

void tu2()
{
 foo(42ll); // __Z3fooIxENSt9enable_ifIXgestT_Li8EEiE4typeES1_
}

Now, we we see the modified symbol for foo() in tu2.o:
 __Z3fooIxENSt9enable_ifIXgestT_Li8EEiE4typeES1_

Thus, the change breaks the ABI, because the condition being part the symbol changed from
“XgestT_Li4EE” to “XgestT_Li8EE”.

Nevertheless, we can link the executable using both object files.
As a result the executable has both symbols:
 __Z3fooIxENSt9enable_ifIXgestT_Li4EEiE4typeES1_
 __Z3fooIxENSt9enable_ifIXgestT_Li8EEiE4typeES1_

Thus, usually having different requirements with enable_if usually is no problem at all, because
we use templates, where the call result in inline instantiations of the templates. Any call of foo() is located
in the same object file as the instantiation and the resulting executable just has both versions of foo() and
works just fine. The program above outputs:
 foo() for 'std::enable_if_t<(sizeof(T) >= 4)>'
 foo() for 'std::enable_if_t<(sizeof(T) >= 8)>'

However, as Daveed Vandevourde comments: “All kinds of things could go wrong, of course, but for
typical situations they don’t happen.”

For example, if we have a static member in foo(), we suddenly have two different static members, not
(necessarily) shared. If inside foo() we'd have
 static int numCalls = 0;
we'd get two different symbols:
 00402040 D __ZZ3fooIxENSt9enable_ifIXgestT_Li4EEiE4typeES1_E8numCalls
 00402044 D __ZZ3fooIxENSt9enable_ifIXgestT_Li8EEiE4typeES1_E8numCalls

If we replace the enable_if clause by requires clauses, for template code we have pretty much the
same behavior:
If
 template<typename T> requires (sizeof(T) >= 4) int foo(T);
becomes

N. Josuttis: P0830R0: Using Concepts and requires in the C++ Standard Library

 3

 template<typename T> requires (sizeof(T) >= 8) int foo(T);
and even if we replace
 template<typename T> std::enable_if_t<(sizeof(T) >= 4), int> foo(T);
by
 template<typename T> requires (sizeof(T) >= 8) int foo(T)
this usually works in practice, because both the call and the instantiation are in the same object file
provided we don’t have side effects and/or stateful behavior.

But as Jonathan Wakely comment:

In addition to the local static issue there's an issue with non-template member functions of class
templates in explicit instantiations. Those can't have enable_if constraints though, so they are
affected as described below for ordinary functions.

So, we also have the ability for full specializations into account.

Note1: When trying these examples out with compiler supporting concepts out that gcc you might not see
yet that the requires clause is part of the name mangling at all, which is a bug and has to get fixed (in
coordination with all who care for a standard mangling).

Requires with Non-Template Code

Originally, require clauses should also be able to be used with ordinary functions:
 int foo() requires (sizeof(T) >= 4);

In this case, the call and the definition might easily occur in different translation units. And when we
change the requirement to
 int foo() requires (sizeof(T) >= 8);
and only compile the call without compiling the definition again, the linker will search for a function using a
different name mangling and will fail.

However, in Toronto meeting 2017, CWG seems to have decided that
CWG decided in Toronto that:

 Consensus: requires-clauses on non-templated functions are ill-formed

So, this doesn’t seem to be an issue, yet.

3. Semantic	Guidelines	

As a third group of guideline let me come up with some proposals regarding the question of when and
how to define concepts.

To some extent, this is similar to dealing with patterns. For that reason, let me introduce two new terms
here:

 Concept System
o A set of concepts, which play together to cover a couple of requirements by a consistent

way and style.
 Concept Language

o A concept system, where the concepts depend on and compose each other to form a
consistent set of concepts being able to help in various contexts.

The goal for a C++ standard library should be to establish at least a concept system; ideally a concept
language.

As a general guideline, Eric Niebler and Casey Carter pointed to an important aspect:

Concepts should care about semantics, not syntax. Or in other words: concepts should reason about
what your code means and not whether whether it compiles

For this reason

 Not each trait is a useful concept. For example, a trait is_copyable checks whether we can call
the copy constructor, while a concept IsCopyable means that after a copy (there might be
different ways to perform it) two objects have the same value.

 For the same reason, not every STL requirement is necessarily a concept.

N. Josuttis: P0830R0: Using Concepts and requires in the C++ Standard Library

 4

That means that we still need traits and we still need requires clauses to fix unintended behavior
(“shall not participate in overload resolution unless…”) without introducing concepts for them.

In fact:

 Traits yielding types are never concepts.
 Traits and enable_if clauses without semantics should not be concepts.
 Concepts are requirements for humans

o Concepts can't be generated.
o There are no high order concepts

For this reason, a better categorization for requirements, as Walter Brown discusses in P0788R0.

4. Summary	

Here some recommendations I see from the discussion we had so far.

 Concept names use CamelCase.
 Concepts and requires clauses should always be predicates (be stateless and return bool).
 Don’t convert all traits or enable_if clauses into concepts.
 Use concepts and requires clauses only for template code.
 Concepts evolve

o May be: “Three strikes and you conceptify” (if a concept proved to be useful three times
in three contexts, we should standardize it).

The good now is that with these rules ABI compatibility is not an issue. Thus, we can fix mistakes.

5. Acknowledgements	

Thanks to Daveed Vandevoorde, Ville Voutilainen, Alisdair Meredith, Walter Brown, Eric Niebler, Bob
Steagull, Casey Carter, Beman Dawes, and several others who helped me to come up with this analysis
and recommendation. Any error is probably due to my lack of understanding.

