
P0822R0 2017-10-16 Reply-To: gdr@microsoft.com

1

C++ Modules Are a Tooling Opportunity
Gabriel Dos Reis

Microsoft

It must be considered that there is nothing more difficult to carry out, nor more

doubtful of success, nor more dangerous to handle, than to initiate a new order of

things. For the reformer has enemies in all those who profit by the old order, and only

lukewarm defenders in all those who would profit by the new order, this lukewarmness

arising partly from fear of their adversaries, who have the laws in their favour; and

partly from the incredulity of men, who do not truly believe in anything new until they

have had the actual experience of it. – Niccolò Machiavelli

Introduction
The advent of C++ modules represents a unique and unprecedented opportunity for the C++ community

to nurture a vibrant and robust tooling ecosystem, from build systems to packaging, semantics-aware

development tools, etc.

Traditionally, the C++ standards definition does not directly deal with how to build a C++ program, leaving

such matters to implementations for various reasons. The existing standards text deals mostly with one

translation unit at a time – rarely the typical scenario for building programs or components at scale. On

the other hand, modules - by necessity - put emphasis on the aggregation and the coherence of sets of

translation units. And this is for the better, because they reflect how we organize code. Still, how to build

and how to distribute components is left outside the standards text. Build systems are far more varied in

nature, and C++ implementations vary dramatically in how they integrate into development environments

for the WG21 committee to legislate. There is no reason to attempt to severely restrict how C++ should

be implemented, nor are there compelling reasons to limit or to stifle innovations in this space. In fact,

according to ISO [1],

Through its members, it brings together experts to share knowledge and develop

voluntary, consensus-based, market relevant International Standards that support

innovation and provide solutions to global challenges.

By and large, the diversity in the C++ implementation landscape and the avoidance of a monoculture are

immensely beneficial to the development of C++ itself, programming ideas, and implementation

techniques. This diversity also comes at a (small) price as evidenced by the occasional fragmentation of

“implementation user interfaces” (e.g. compiler switches) or development environments. This is

unavoidable because C++ is used is a very diverse environment.

However, to facilitate interoperability, free circulation of ideas, and tooling, I would like to encourage C++

implementers to work together to resolve implementation techniques that cannot be legislated in the C++

standards definition without also stifling innovation. The C++ Modules TS presents such an opportunity.

P0822R0 2017-10-16 Reply-To: gdr@microsoft.com

2

Processing Module Uses
Modules are a set of translation units, with one distinguished translation unit called the module interface

unit; all others are called module implementation units. The module interface unit contains a module

declaration that establishes the purview of a module, and the set of declarations that are made visible to

the consumers of that module. Those declarations are said to be exported. A consumer of a module M

executes an import-declaration, e.g. “import M;”, to get access to all exported declarations of M which

are hosted in M’s interface unit. How the source of the interface unit of M is stored, or how the C++

implementation finds that source when it translates that import-declaration is not dictated by the Module

TS, just like the C++ standards text does not dictate how the “header files” in ‘#include’ directives are

found. That non-prescription of “header files” mapping is necessary for innovation, and indeed is used by

various C++ implementations to (1) just open a file based on certain file search protocol; (2) map to a pre-

compiled header (PCH) to avoid reprocessing the same content over and over; (3) internally make

available certain (builtin) declarations; etc. As an aside, the C++ standards text: (a) makes a distinction

between standard “headers” and “header files”, as standard headers need not be stored in files; (b) does

not require the standard library to be written purely in ISO C++, and in fact most (all?) aren’t.

So much for the abstract semantics. Concretely, how does a C++ implementation go from “import M;”

to finding the exported declarations of M? Let’s note that because of the ambiguities in the C++ grammar,

it is often necessary for the C++ implementation to know which names are exported by M before further

processing – worse, it is even necessary for correct tokenization purposes. Consequently, there is a logical

necessity for the source of the module interface unit of M to have been processed in some form before

further processing after the import-declaration. This isn’t new requirement, and it is similar to how

standard headers and header files are handled today. One can imagine at least four scenarios for

processing import-declarations:

1. Treat the interface unit as a glorified header file: by an implementation-defined manner (much

like for header files), locate the source file containing the module interface unit and process it in

a way that preserves the standard required observable behavior. Do this repeatedly for any non-

redundant import declaration nominating that module. Clearly, this may not be the most efficient

translation method, but it is valid and has its uses.

2. Require the module interface unit be translated prior to the importing translation unit: this the

scenario where the module M’s interface is “compiled” before compiling any consumer –

currently implemented by all three major compilers implementing the Module TS. This approach

exposes the dependency graph of a component without duplication. The result of prior

compilation of the module interface is then used to expose the exported declarations of M.

3. Treat the interface unit as an on-demand pre-compiled glorified header file: this is a combination

of (1) and (2) where the result of prior processing is “cached” in an implementation-defined

manner.

4. Duplicate and compile-as-you-go: this is a variation of (3), but with some redundancy allowed.

These aren’t the only possible translation techniques, but they are likely common ones. The Clang

compiler has facilities to do (2), (3), and possibly (4). The current (experimental) implementation in

Microsoft Visual C++ offers (2). It is unclear where other compilers, in particular GCC, stands in this

spectrum. One trend though is to avoid turning the C++ implementation into a full-fledged build system

for the C++ ecosystem supports far more build systems than one could realistically expect a single

P0822R0 2017-10-16 Reply-To: gdr@microsoft.com

3

compiler to adequately duplicate and support. Thankfully, the Module TS does not require a C++

implementation to become a build system – it is an option if an implementer chooses, but not one that I

would recommend.

Build Systems
Any of the translation techniques (2)-(4) implies an update to the build definition to express the

dependencies of components on module interface units. Furthermore, modules can be consumed in

either source form, or in binary form (e.g. equivalent of conventional header+binary library). Build

systems need to accommodate for either forms, and the existence of translation artifacts related to

modules.

Packaging
Modules provide linguistic support for expressing software architecture, boundary, dependencies at scale.

But they are not a distribution medium, by design. With modules’ emphasis on set of translation units

that make up a logical component, there is an opportunity for beefing up packaging support taking

advantage of characteristics offered by modules. Again, this is an opportunity for the C++ community to

develop common packaging systems or packaging protocols.

Binary Module Interface Formats
C++ implementations using any of the translation techniques (2)-(4) will store the results of compiling a

module interface in some form. It would be a serious case of missed opportunity for the C++ community

if N compilers targeting the same platform ended up using N different binary formats. This is an

opportunity for tool vendors to coalesce around well-defined binary formats when targeting a given

platform. Better yet, it is an opportunity for the C++ ecosystem to define a binary format and/or APIs to

manipulate the compilation artifacts associated with module compilation. The binary format does not

need to be in one-to-one correspondence with the internal data structures used by a given compiler. As

a community effort, there would be no need for N-to-N converter, at most there would be an 1-to-N

converter. The cost of developing such format and converter would be much less (quite insignificant)

when shouldered by a community than if it is the endeavor of individuals.

For example, the Microsoft Visual C++ compiler is developing a format called IFC, inspired by the IPR [2]

data structures, to store binary module interfaces. These data structures aren’t what the Visual C++

compiler internally uses for normal processing of C++ source code. However, the IFC contains logical

description of the abstract semantics graph resulting from compiling a module interface unit. The IPR is

general, efficient, and flexible enough to describe the entire C++ and more. Microsoft is willing to work

with other vendors to refine the IFC, and is fully committed to publication of the specification of the IFC

binary format and associated tools to the larger C++ community, a commitment to nurturing a robust C++

tools ecosystem for all.

Because the abstract semantics graph stored in the IFC file captures the full semantics, and is simple to

parse so you do not need another C++ compiler (or front-end) to reprocess a module interface, an IFC file

offers more information (e.g. the set of configuration parameters that were used to build a component,

the calling convention in place, etc.) to tools such as SWIG (mentioned in P0804R0) than the conventional

unprocessed headers methodology provides. Further, it offers the ability to construct “binding interfaces”

P0822R0 2017-10-16 Reply-To: gdr@microsoft.com

4

that use the higher levels of C++ abstractions instead of the lower “C level” constructs that routinely lead

to bugs and other vulnerabilities that higher level C++ constructs can and do catch.

P0804R0
Tom Honermann shared an early draft of his paper P0804R0 titled “Impacts of the module TS on the C++

tools ecosystem” with a few people from the C++ community (including myself) touching upon some of

the topics discussed above, and also as a rationale for the PDTS ballot comment US/001. The comments

below are based on that early draft. The concerns raised in P0804R0 appear to fall roughly in two

categories, and are based on the experimental implementation of the Modules TS in Microsoft’s Visual

C++ compiler.

Interaction with build systems, and consumption of binary module interfaces
As discussed in earlier sections, the advent of modules represents an opportunity to beef up the C++

tooling ecosystem, not reason to stay forever in the ‘70s technologies. It is an opportunity for the C++

community to build shared knowledge and tools around platforms, or universally. The specific translation

technique that Visual C++ is using is technique (2) but it is hardly the final state. This translation technique

isn’t required by the Module TS in any form; it is one of the allowed and the standards text must make

room for innovation, while supporting robust tooling.

Microsoft is a producer and a huge consumer of software and software development tools, including
notably software and tools produced outside the company. So, it is affected as well by Modules, which is
why it has been at the front of suggesting more (open) tooling - not less - especially semantics-aware
development tools. Microsoft is fully committed to opening up its IFC format and associated tooling for
the C++ community. The Visual C++ team has been working on related efforts, such as build system
support. There are numerous build systems in used in Microsoft, in addition to the fact as a C++ toolset
vendor it has to supports build systems outside its control. Consequently, this is an area where Microsoft
is most interested in solutions that work for the larger C++ community, and the community can learn from
practices from other software communities.

Customer service support
A concern in P0804R0 is that “At least one large company is in the process of modularizing its source code

(not currently using the Modules TS) in order to reduce overhead in its distributed build system by

distributing module artifacts in lieu of source code.”

As of this writing, we know of only one C++ tool vendor who is making available its experimental

implementation of the Standard Library modules to collect early feedback, as WG21 usually asks. That is

the Microsoft’s Visual C++ compiler. If that is indeed the “one large company” of concern, the situation

is easily clarified:

1. There is no actual modularization of the source code. The module artifacts (e.g. ‘std.core’, etc.)

were produced by just writing ‘#include’ of the existing standard headers unmodified in a

source file and running the compiler with suitable switches (e.g. /module:export

/module:name std.core). That is it. Microsoft generally distributes its C++ standard library

source files (even though the standard library is not required to be written in C++), and these

source files just fell through the crack during packaging.

P0822R0 2017-10-16 Reply-To: gdr@microsoft.com

5

2. When WG21 finally settles on the modular decomposition of the Standard Library, that will be

time to invest into actual source-level implementation, and as ever, the source will be available.

Conclusion
While C++ Modules are new language constructs, and therefore requires tools support and understanding,

they represent an opportunity for the C++ community to finally improve the tools support ecosystem. This

will most certainly require cooperation between tool vendors to define aspects that are by necessity

outside the purview of the language definition itself.

References

[1] ISO, "ISO: All about ISO," [Online]. Available: https://www.iso.org/about-us.html.

[2] G. Dos Reis and B. Stroustrup, "A Principled, Complete, and Efficient Representation of C++,"

Mathematics in Computer Science; Springer, vol. 3, no. 3, pp. 335-356, 2011.

