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1 Introduction

This paper surveys part of the constexpr landscape as of late 2017. In January 2017 we began work
on a presentation for [C++Now], subsequently also presented at [CppCon]. The thesis for this talk
was an exploration of constexpr techniques through the construction of a compile-time user-defined
literal for JSON values, as exemplified by the following hypothetical code:
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1 constexpr auto jsv
2 = R"({
3 "feature-x-enabled": true,
4 "value-of-y": 1729,
5 "z-options": {"a": null,
6 "b": "220 and 284",
7 "c": [6, 28, 496]}
8 })"_json;
9 if constexpr (jsv["feature-x-enabled"]) {

10 // code for feature x
11 } else {
12 // code when feature x turned off
13 }

Although we achieved our goals, along the way we found some things we consider to be omissions
and/or defects in the current standard (both in the library and in the language), as well as im-
plementation bugs in standard libraries and varying behaviour between compilers. It is our hope
that by highlighting current shortcomings and giving insight into various use cases for constexpr,
this paper will provide guidance for future constexpr standardization and helpful considerations
for implementers.

2 Representing JSON values

A JSON value is a discriminated union of six possibilities: null, a boolean, a number, a string,
an array of values, or an object (which is a map of strings to values). Of these, nulls, booleans
and numbers are immediately usable as literal types. Strings, arrays and objects require some
implementation as compile-time containers.

2.1 A compile-time vector type

We implemented a simple bounded compile-time vector type with a size member of type std::size_t
and a data member of type std::array<T, N>.

1 namespace cx
2 {
3 template <typename Value, std::size_t Size = 5>
4 class vector
5 {
6 using storage_t = std::array<Value, Size>;
7

8 public:
9 template<typename Itr>

10 constexpr vector(Itr begin, const Itr &end)
11 {
12 while (begin != end) {
13 push_back(*begin);
14 ++begin;
15 }
16 }
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17 constexpr vector(std::initializer_list<Value> init)
18 : vector(init.begin(), init.end())
19 {
20 }
21

22 constexpr vector() = default;
23

24 // some functions omitted for the sake of brevity
25 // and initial exposition
26 // ...
27

28 constexpr auto capacity() const { return Size; }
29 constexpr auto size() const { return m_size; }
30 constexpr auto empty() const { return m_size == 0; }
31

32 constexpr void clear() { m_size = 0; }
33

34 constexpr const Value* data() const {
35 return m_data.data();
36 }
37

38 private:
39 storage_t m_data{};
40 std::size_t m_size{0};
41 };

Our first surprise came when we tried to implement begin() and end() for this vector type in the
obvious way:

1 template <typename Value, std::size_t Size = 5>
2 class vector
3 {
4 // ...
5

6 constexpr auto begin() const { return m_data.begin(); }
7 constexpr auto begin() { return m_data.begin(); }
8

9 constexpr auto end() const { return std::next(m_data.begin(), m_size); }
10 constexpr auto end() { return std::next(m_data.begin(), m_size); }
11

12 // ...
13 };

The implementation of std::next in GCC 7.2 fails when used in a constexpr context because of an
internal function not being marked constexpr, as can be seen at https://godbolt.org/g/4YBTN7.
The functions std::advance and std::distance fail in the same way.

This issue appears fixed in a trunk build of GCC as of September 2017. We don’t take the issue as
a failing of library authors, but rather as an indication that constexpr functions require extensive
testing.

If one is writing a constexpr function, adequate testing practically requires a doubling-up of
tests to ensure that everything works both when invoked at runtime and at compile time.
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2.2 Compile-time associative containers

We used the constexpr vector type for JSON strings (cx::vector<char>) and for JSON arrays
(cx::vector<JSON_Value>). JSON objects are maps from strings to values, so we used an array of
pairs as the underlying storage for our map type.

1 template <typename Key, typename Value, std::size_t Size = 5,
2 typename Compare = std::equal_to<Key>>
3 class map
4 {
5 public:
6 // ...
7

8 private:
9 std::array<cx::pair<Key, Value>, Size> m_data{};

10 std::size_t m_size{0};
11 };

Note the use of cx::pair rather than std::pair. We were unable to use std::pair because

std::pair’s assignment operator is not constexpr.

This appears to be a defect in the standard, since if one has constexpr-friendly types inside a
std::pair, one can clearly assign first and second in a constexpr context. The same is true of
std::tuple.

2.3 Algorithms

In building a constexpr map type as an array of pairs, providing operator[] required a constexpr

implementation of std::find_if. This we provided by simply adding the keyword constexpr to a
reference implementation found at http://en.cppreference.com/w/cpp/algorithm/find.

1 template <class InputIt, class UnaryPredicate>
2 constexpr InputIt find_if(InputIt first, InputIt last, UnaryPredicate p)
3 {
4 for (; first != last; ++first) {
5 if (p(*first)) {
6 return first;
7 }
8 }
9 return last;

10 }

In the course of implementing our talk, we found constexpr uses for several other algorithms, e.g.
std::equal and std::mismatch, which we provided similarly.

It is our belief that all of the C++14-era (pre-parallel) algorithms may be made constexpr, in
most cases just by adding constexpr.

Requirements for the three algorithms that may allocate memory – std::inplace_merge,
std::stable_partition, and std::stable_sort – are written such that complexity guarantees are
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relaxed if there is not enough memory available, so we believe these could also be made constexpr
with relaxed complexity.

2.4 Iterators

Using constexpr algorithms naturally requires constexpr iterators. We have a constexpr vector
type with a constexpr push_back operation.

No functions on std::back_insert_iterator are yet constexpr-friendly.

Having a constexpr-capable back_insert_iterator was useful to us, so we wrote an equivalent.
We see no reason why most iterators and their member functions could not be marked constexpr,
so that they may work with an appropriate constexpr-friendly container.

3 Parsing JSON values

Our basic approach to parsing the JSON user-defined literal at compile time was to build a
parser combinator library using constexpr lambda expressions and, from this, to build a JSON
parser. The details of this approach can be found in our conference talks and in the code at
[constexpr_all_the_things].

3.1 Multiple passes over the literal

In order to precompute size information, we needed to make more than one pass over the literal to
be parsed. To this end, we used the templated form of a string literal operator proposed in [N3599]
and furthered in [P0424]. This is currently implemented as an extension in GCC and Clang in the
form originally proposed.

1 template <typename T, T... Ts>
2 constexpr auto operator "" _json()
3 {
4 const std::initializer_list<T> il{Ts...};
5 constexpr auto S = sizes<Ts...>();
6 auto val = value_wrapper<S.num_objects, S.string_size>{};
7 val.construct(std::string_view(il.begin(), il.size()));
8 return val;
9 }

In order to achieve right-sizing of the JSON value, the return value of this operator is dependent
on the output size required, which is computed from the literal itself.

Multiple passes on the input, with later passes dependent on earlier ones, would have been im-
possible without a templated user-defined literal operator.
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On line 4 above, we use a std::initializer_list to expand the template arguments. It doesn’t
need to be constexpr in this case, but naturally, being in a “constexpr ALL the things!” mindset,
by default we typed constexpr in front of it, only to find that

constexpr std::initializer_list is not currently possible.

Although we are not sure of the possibilities or requirements here, this was at least surprising, and
the source of an error in our slides and an issue logged against our github repository.

On line 5 above, the possibility of using structured bindings to decompose S.num_objects and
S.string_size occurred to us. Once again, we were surprised to find that

structured bindings cannot currently be applied to constexpr declarations.

3.2 std::string_view

In parsing JSON literals, we made extensive use of std::string_view. However, we found a few
operations where the particular library implementation available at the time (GCC 7.2) was not
constexpr-capable, although the standard does specify constexpr:

• constructing a std::string_view from a const char*

• std::string_view’s operator==

• member functions remove_prefix and remove_suffix

Like the issue with using std::next, these issues have been fixed in GCC trunk, but they serve to
underline the requirement for constexpr tests.

4 Miscellany

4.1 Oversights in the standard?

In the course of development, we found a few other things that seem to have missed the constexpr
train for no good reason.

4.1.1 std::swap and std::exchange

Neither of these functions is currently marked constexpr, and by our thinking, they would be useful
at compile-time. If std::swap were constexpr, we would naturally expect that swap implemented
as a member function on library types would also be constexpr where that makes sense (e.g.
std::array::swap).
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4.1.2 std::array

The “trivial” container operations on std::array are all constexpr. However, swap and fill are
not, and neither are the equality and comparison operators. To us, this seems like an omission.

The standard seems to have several inconsistencies in applying constexpr; in particular,
there seem to be oversights for mutating operations and container operations which may be
constexpr-friendly on literal types.

4.2 Debugging

Writing the code was not easy. In our experience, building up anything more than trivial constexpr
constructs requires painstaking piecemeal work, frequently using primitive tools like throw to force
errors in constexpr evaluation.

In the case of building up parser combinators, the nesting depth of lambda expressions was such
that compiler diagnostics were extremely large and obscure, even for experienced template metapro-
grammers.

Additionally, when the C++ was working, but the JSON string to be parsed was ill-formed, there
was no easy way to communicate the location and nature of the parse error. This prevented us
from writing anything more than very primitive error handling and from setting up credible tests
for intentionally failing parses.

The ability to provide custom compiler diagnostics would have helped tremendously in the de-
velopment, use, and testing of our code.

[P0596] is of particular interest to us as a potential facility for compile-time debugging and testing.

Although the focus of our presentation was entirely on compile-time computation, the mixing of
runtime and compile-time calculations is currently problematic, given the inability to control or
detect when the evaluation is occurring. This did lead to a bug in our slides; it’s easy to accidentally
omit a constexpr keyword and get runtime results where purely compile-time was intended. A
facility like [P0595] would be very helpful here.

4.3 Other work

Much of our work was in discovering currently usable techniques for creating and manipulating
structures at compile time. At the moment we are limited to fixed-size structures, and this greatly
increases the complexity of solutions. If dynamic structures were available at compile time, this
work would be a lot simpler.

For this reason, we are very interested in the evolution of ideas in [P0597] and [P0639].
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5 Conclusion

Even with the inability to create dynamic structures at compile time, creating relatively complex
structures is currently possible.

The parser combinator approach offers, we think, an interesting technique for embedding all kinds
of literals in C++ code. It is relatively easy to construct new parsers with this technique. JSON
values are just one example; other possible applications are compile-time regular expressions, URL
decompositions, and more.

Compile-time computation in relatively “normal” constexpr C++, rather than template metapro-
gramming, is likely to become more widespread, and the development of the standard to better
support use cases like ours is exciting.
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