
Treating Unnecessary decay

Document #: WG21 P0777R0
Date: 2017-10-10
Project: JTC1.22.32 Programming Language C++
Audience: LWG
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Introduction 1
2 Findings and proposed wording . 2
3 Acknowledgment 3

4 Bibliography 3
5 Document history 4

Abstract

We report the results of a Standard Library audit, inspecting each application of the decay trait.
We find a few occurrences that can be replaced (usually by the recently-approved remove_cvref
trait) to provide more precise specifications, and recommend wording changes to that effect.

Woe, destruction, ruin, and decay
— WILLIAM SHAKESPEARE

Whenever a people or an institution forget its hard beginnings, it is
beginning to decay.

— CARL SANDBURG

Great effort is required to arrest decay and restore vigor.

— HORACE

1 Introduction

[P0550R2] points out that the Standard Library’s specifications make more use of decay than
strictly necessary, i.e., in “places where it would suffice simply to strip cv and reference qualifiers.”
It seems likely that such overuse resulted from several overlapping factors:

• There was no trait exactly corresponding to remove_const_t<remove_reference_t<>>.

• It is rather inconvenient to type remove_const_t<remove_reference_t<>>.

• It is easy to remove the const and reference qualifications in the wrong order, a mental error
likely leading to incorrect program behavior.

• The decay trait gets the order right, is reasonably convenient to type, and seems (at first
glance) to do no harm except for doing more work than strictly necessary.

However, there is harm in such overuse, as succinctly described by Peter Dimov: “When you
read code and see decay_t, you don’t know whether decay_t has been used because decay
semantics are needed, or because the intent was to merely remove references and cv-qualifiers.”
He continued, “It can be technically correct, as in it’ll yield the right answer, but it’s still wrong

Copyright c© 2017 by Walter E. Brown. All rights reserved.

1

mailto:webrown.cpp@gmail.com

2 P0777R0: Treating Unnecessary decay

because it’s the wrong word.” In Toronto (July 2017), LEWG found such arguments persuasive
and, as proposed in [P0550R2], approved a new remove_cvref trait.

Dimov’s observation applies not only to programs, but also to such technical documents as
the Standard Library’s specification. Accordingly, it seems appropriate to undertake the next step
envisioned in [P0550R2]: “In all, the Library clauses directly apply decay_t circa forty times; we
recommend that each be audited” for possible replacement by the new trait or by the even simpler
remove_reference.

We have performed such an audit, inspecting each context in which the standard library
applies the decay trait. In the next section, we present our detailed findings and propose wording
to implement our recommendations.

2 Findings and proposed wording1

As a rule of thumb, it seems that evaluating a relationship between two types (e.g., via is_same
or is_base_of) is the major context that typically does not require full decay semantics. It is
certainly useful, in such cases, for the types being compared to be cv- and reference-unqualified.
However, additionally transforming array and function types into pointer types seems to have no
bearing on the outcome of the cases we assessed.

2.1 make_index_sequence<tuple_size_v<decay_t<Tuple>>>
We find this expression in each paragraph of [tuple.apply]. We see no need for decaying behavior
here; simply stripping qualifiers seems sufficient. Moreover, since tuple_size is defined (in
[tuple.apply]/4) for const-qualified types, it suffices to remove only a reference qualifier, if any.
We therefore recommend remove_reference as a suitable replacement for each of these uses of
decay:

Edit [tuple.apply]/1 and [tuple.apply]/2 as shown:
make_index_sequence<tuple_size_v<decay_tremove_reference_t<Tuple>>> · · ·

Further, since the surrounding context seems to impose no requirements on the Tuple type,
we additionally recommend that LWG consider adding a requirement that Tuple must be a
tuple-like type.

2.2 is_same_v<decay_t<U>, in_place_t>
We find this expression in [optional.ctor]/23. We see no need for decaying behavior here; simply
stripping qualifiers seems sufficient. We recommend remove_cvref as a replacement for this use
of decay:

Edit [optional.ctor]/23 as shown:
· · · is_same_v<decay_tremove_cvref_t<U>, in_place_t> · · ·

2.3 is_same_v<optional<T>, decay_t<U>>
We find this expression in [optional.ctor]/23 and again in [optional.assign]/16. We see no need
for decaying behavior here; simply stripping qualifiers seems sufficient. We recommend remove_
cvref as a replacement for each of these uses of decay:

Edit [optional.ctor]/23 and [optional.assign]/16 as shown:
· · · is_same_v<optional<T>, decay_tremove_cvref_t<U>> · · ·

1Proposed wording changes are provided in the form of editorial notes, displayed against a gray background, con-
taining embedded markup to denote intended additions and deletions. All edits are relative to the post-Toronto Working
Draft [N4687].

P0777R0: Treating Unnecessary decay 3

Further, in each of these paragraphs, we additionally recommend that the Project Editor
consider also replacing optional<T> by the equivalent, slightly simpler, injected-class-name
optional.

2.4 is_same<T, decay_t<U>>
We find this expression in [optional.assign]/16. We see no need for decaying behavior here; simply
stripping qualifiers seems sufficient. We recommend remove_cvref as a replacement for this use
of decay:

Edit [optional.assign]/16 as shown:
· · · conjunction_v<is_scalar<T>, is_same<T, decay_tremove_cvref_t<U>>> · · ·

2.5 is_same_v<decay_t<T>, variant>
We find this expression in [variant.ctor]/16 and again in [variant.assign]/14. We see no need for
decaying behavior here; simply stripping qualifiers seems sufficient. We recommend remove_
cvref as a replacement for these uses of decay:

Edit [variant.ctor]/16 and [variant.assign]/14 as shown:
· · · is_same_v<decay_tremove_cvref_t<T>, variant> · · ·

2.6 decay_t<T> is neither . . . nor . . .
We find this expression in [variant.ctor]/16. The result of decay_t is subsequently compared
against specializations of certain templates. We see no need for decaying behavior here; simply
stripping qualifiers seems sufficient. We recommend remove_cvref as a replacement for these
uses of decay:

Edit [variant.ctor]/16 as shown:
· · · decay_tremove_cvref_t<T> is neither · · ·

2.7 decay_t<decltype(t1)>
We find this expression four times in [func.require], once in each of four bullets contributing to the
definition of the INVOKE pseudo-function: In two of the cases, the context asks whether we have
“a specialization of reference_wrapper” on our hands; in the other two cases, the context asks
whether we have an inheritance relationship to another type. In none of these do we see any need
for decaying behavior; simply stripping qualifiers seems sufficient. We recommend remove_cvref
as a replacement for these uses of decay:

Edit [func.require]/1 (bullets 1.1, 1.2, 1.4, and 1.5) as shown:
· · · decay_tremove_cvref_t<decltype(t1)> · · ·

3 Acknowledgment

Many thanks to Peter Dimov for his thoughtful comments regarding the application of the
remove_cvref trait.

4 Bibliography

[N4687] Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4687 (post-Toronto mailing), 2017–07–30. http://wg21.link/n4687.

[P0550R2] Walter E. Brown: “Transformation Trait remove_cvref.” ISO/IEC JTC1/SC22/WG21 document
P0550R2 (post-Toronto mailing), 2017–07–17. http://wg21.link/p0550r2.

http://wg21.link/n4687
http://wg21.link/p0550r2

4 P0777R0: Treating Unnecessary decay

5 Document history

Rev. Date Changes

0 2017-10-10 • Published as P0777R0, pre-Albuquerque.

	Title
	Contents
	Abstract
	1 Introduction
	2 Findings and proposed wording
	3 Acknowledgment
	4 Bibliography
	5 Document history

