
Library Support for the Spaceship (Comparison) Operator

Document #: WG21 P0768R0
Date: 2017-09-30
Project: JTC1.22.32 Programming Language C++
Audience: LEWG ⇒ LWG
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Introduction 1
2 Comparison category types 2
3 Discussion 2
4 Proposed wording 2

5 Acknowledgments 13
6 Bibliography 13
7 Document history 13

Abstract

This paper proposes standard library wording to accompany the core language wording in Sut-
ter’s proposal [P0515R2], “Consistent comparison.”

Isn’t it strange how a lamb can feel like a lion when comparing itself to a mouse,
whereas a lion feels like a lamb when measuring itself against dragons?

— RICHELLE E. GOODRICH

What makes the Universe so hard to comprehend is that there’s nothing to com-
pare it with.

— ASHLEIGH BRILLIANT

Contrast is what makes photography interesting.
— CONRAD HALL

1 Introduction

The major contribution of Sutter’s paper [P0515R2], “Consistent comparison,” is the design and
specification of a new C++ operator. Spelled <=>, it is formally termed the three-way comparison
operator and colloquially known as the spaceship operator.

Although it is a core language feature, this new operator’s behavior relies on new standard
library components known as comparison category types. This paper provides standard library
wording to specify those components and their (notional) underlying enums,1 together with some
related objects, functions, and algorithms.

Copyright c© 2017 by Walter E. Brown. All rights reserved.
1Ideally, enums alone would suffice. Alas, as Sutter’s paper notes at the top of §3, “enums don’t currently support a

way to express value conversion relationships [that are desired].”

1

mailto:webrown.cpp@gmail.com

2 P0768R0: Library Support for the Spaceship (Comparison) Operator

Application of this new language feature in the context of the standard library is beyond the
scope of the present paper. Only those facilities proposed by Sutter’s paper are specified herein.

2 Comparison category types

In section 2.1, [P0515R2] proposes five comparison category types, each of which is a standard
library type. Here are some of their salient features:

• weak_equality and strong_equality categorize/characterize the spaceship operator’s
result when a type permits only equality (==, !=) comparisons.

• strong_ordering and weak_ordering categorize/characterize the spaceship operator’s
result when a type permits all six comparison operators, among which exactly one of x < y,
x == y, and x > y will be true.2

• partial_ordering categorizes/characterizes the spaceship operator’s result when a type
permits all six comparison operators, but none of x < y, x == y, and x > y need be true.

• The strong_ and weak_ comparison category types are distinguished by the substitutability
property, namely, whether a == b implies f(a) == f(b).3

• “Each [comparison category type] has predefined values, three numeric values for each
_ordering and two for each _equality.” Each call to a spaceship operator returns one of
these values.

• Finally, there are selected implicit conversions among these comparison category types, as
well as six named comparison functions taking an argument of comparison category type.4

Please see §4 below for the proposed detailed specifications of these and related components. For
further design details, tutorial information, proposed core language wording, and a bibliography
of recent WG21 papers that explored other approaches, please consult Sutter’s paper.

3 Discussion

Following its review of Sutter’s paper, LEWG in Toronto approved all the library components
specified below. However, Sutter’s paper does not recommend a name for the header in which
the standard library will provide these components. Since all are in support of the comparison
operator, we herein propose the header name <cmp>, a commonly-used short form that we find
much easier to type than <comparison>, <compare>, <comparing>, <3way>, or <spaceship>.5

4 Proposed wording6

4.1 Insert, in alphabetical order, the following new entry into the C++ library headers table in
subclause [headers]:

<cmp>

2In mathematics, this is known as the trichotomy property of an order relation. See, for example, the explanation at
https://en.wikipedia.org/wiki/Trichotomy_(mathematics).

3This assumes that “f reads only comparison-salient state that is accessible using the public const members.”
4These functions are intended for users who prefer to avoid writing a<=>b @ 0, where @ denotes any of the six

traditional comparison operators.
5We could, of course, also consider #include <=>. ,
6Throughout this paper, all proposed additions are relative to [N4687], the post-Toronto Working Draft. Editorial

notes are displayed against a gray background.

https://en.wikipedia.org/wiki/Trichotomy_(mathematics)

P0768R0: Library Support for the Spaceship (Comparison) Operator 3

4.2 Insert the following new row into the Language support library summary table in subclause
[support.general]:

21.9 Initializer lists <initializer_list>
21.x Comparisons <cmp>
21.10 Other runtime support <csignal> <csetjmp> <cstdarg> <cstdlib>

4.3 Insert the following new subclause after subclause [support.initlist] and before subclause
[support.runtime]:

21.x Comparisons [cmp]

21.x.1 Header <cmp> synopsis [cmp.syn]

1 The header <cmp> specifies types, objects, and functions for use primarily in connection with
the three-way comparison operator ([expr.spaceship]).

namespace std {
// comparison category types
class weak_equality;
class strong_equality;
class partial_ordering;
class weak_ordering;
class strong_ordering;

// named comparison functions
constexpr bool is_eq (weak_equality cmp) noexcept { return cmp == 0; }
constexpr bool is_neq (weak_equality cmp) noexcept { return cmp != 0; }
constexpr bool is_lt (partial_ordering cmp) noexcept { return cmp < 0; }
constexpr bool is_lteq(partial_ordering cmp) noexcept { return cmp <= 0; }
constexpr bool is_gt (partial_ordering cmp) noexcept { return cmp > 0; }
constexpr bool is_gteq(partial_ordering cmp) noexcept { return cmp >= 0; }

// [cmp.common], common comparison category type
template<class... Ts>

struct common_comparison_category { using type = see below; };
template<class... Ts>

using common_comparison_category_t
= typename common_comparison_category<Ts...>::type;

// [cmp.alg], comparison algorithms
template<class T, class U> auto compare_3way(const T& a, const U& b);

template<InputIterator I1, InputIterator I2, class Cmp>
auto lexicographical_compare_3way(I1 b1, I1 e1, I2 b2, I2 e2, Cmp comp)
-> common_comparison_category_t<decltype(comp(*b1,*b2)), strong_ordering>;

template<InputIterator I1, InputIterator I2>
auto lexicographical_compare_3way(I1 b1, I1 e1, I2 b2, I2 e2);

template<class T> strong_ordering strong_order (const T& a, const T& b);
template<class T> weak_ordering weak_order (const T& a, const T& b);

4 P0768R0: Library Support for the Spaceship (Comparison) Operator

template<class T> partial_ordering partial_order(const T& a, const T& b);
template<class T> strong_equality strong_equal (const T& a, const T& b);
template<class T> weak_equality weak_equal (const T& a, const T& b);

}

21.x.2 Comparison category types [cmp.categories]

1 The _equality and _ordering types are collectively termed the comparison category types.
Each is specified in terms of an exposition-only data member named value whose value typically
corresponds to that of an enumerator from one of the following exposition-only enumerations:

enum class eq { equal = 0, equivalent = equal,
nonequal = 1, nonequivalent = nonequal };

enum class ord { less = -1, greater = 1 };
enum class ncmp { unordered = -127 };

2 [Note: The types strong_ordering and weak_equality correspond, respectively, to the terms
total ordering and equivalence in mathematics. — end note]

3 The comparison category types’ relational and equality friend functions are specified with an
anonymous parameter of unspecified type. This type shall be selected by the implementation such
that these parameters can accept literal 0 as a corresponding argument. [Example: nullptr_t
satisfies this requirement. — end example] In this context, the behavior of a program that supplies
an argument other than a literal 0 is undefined.

4 For the purposes of this subclause, substitutability is the property that f(a) == f(b) is true
whenever a == b is true, where f denotes a function that reads only comparison-salient state
that is accessible via the argument’s public const members.

21.x.2.1 Class weak_equality [cmp.weakeq]

1 The weak_equality type is typically used as the result type of a three-way comparison operator
that (a) admits only equality and inequality comparisons, and (b) does not imply substitutability.

namespace std {
class weak_equality {

int value; // exposition only

// exposition-only constructor
explicit constexpr weak_equality(eq v) noexcept : value(int(v)) {}

public:
// valid values
static constexpr weak_equality equivalent {eq::equivalent};
static constexpr weak_equality nonequivalent{eq::nonequivalent};

// comparisons
friend constexpr bool operator==(weak_equality v, unspecified) noexcept;
friend constexpr bool operator!=(weak_equality v, unspecified) noexcept;
friend constexpr bool operator==(unspecified, weak_equality v) noexcept;
friend constexpr bool operator!=(unspecified, weak_equality v) noexcept;

};
}

P0768R0: Library Support for the Spaceship (Comparison) Operator 5

constexpr bool operator==(weak_equality v, unspecified) noexcept;
constexpr bool operator==(unspecified, weak_equality v) noexcept;

2 Returns: v.value == 0.

constexpr bool operator!=(weak_equality v, unspecified) noexcept;
constexpr bool operator!=(unspecified, weak_equality v) noexcept;

3 Returns: v.value != 0.

21.x.2.2 strong_equality [cmp.strongeq]

1 The strong_equality type is typically used as the result type of a three-way comparison oper-
ator that (a) admits only equality and inequality comparisons, and (b) does imply substitutability.

namespace std {
class strong_equality {

int value; // exposition only

// exposition only constructor
explicit constexpr strong_equality(eq v) noexcept : value(int(v)) {}

public:
// valid values
static constexpr strong_equality equal {eq::equal};
static constexpr strong_equality nonequal {eq::nonequal};
static constexpr strong_equality equivalent {eq::equivalent};
static constexpr strong_equality nonequivalent{eq::nonequivalent};

// conversion
constexpr operator weak_equality() const noexcept;

// comparisons
friend constexpr bool operator==(strong_equality v, unspecified) noexcept;
friend constexpr bool operator!=(strong_equality v, unspecified) noexcept;
friend constexpr bool operator==(unspecified, strong_equality v) noexcept;
friend constexpr bool operator!=(unspecified, strong_equality v) noexcept;

};
}

constexpr operator weak_equality() const noexcept;

2 Returns: *this == equal ? weak_equality::equivalent
: weak_equality::nonequivalent.

constexpr bool operator==(strong_equality v, unspecified) noexcept;
constexpr bool operator==(unspecified, strong_equality v) noexcept;

3 Returns: v.value == 0.

constexpr bool operator!=(strong_equality v, unspecified) noexcept;
constexpr bool operator!=(unspecified, strong_equality v) noexcept;

4 Returns: v.value != 0.

6 P0768R0: Library Support for the Spaceship (Comparison) Operator

21.x.2.3 Class partial_ordering [cmp.partialord]

1 The partial_ordering type is typically used as the result type of a three-way comparison
operator that (a) admits all of the six comparison operators, (b) does not imply substitutability,
and (c) permits two values to be incomparable (i.e., a < b, a == b, and a > b might all be
false).

namespace std {
class partial_ordering {

struct {
int cmp
bool is_ordered;

} value; // exposition only

// exposition-only constructors
explicit constexpr
partial_ordering(eq v) noexcept : value{int(v), true } {}

explicit constexpr
partial_ordering(ord v) noexcept : value{int(v), true } {}

explicit constexpr
partial_ordering(ncmp v) noexcept : value{int(v), false} {}

public:
// valid values
static constexpr partial_ordering less {ord::less};
static constexpr partial_ordering equivalent{eq::equivalent};
static constexpr partial_ordering greater {ord::greater};
static constexpr partial_ordering unordered {ncmp::unordered};

// conversion
constexpr operator weak_equality() const noexcept;

// comparisons
friend constexpr bool operator==(partial_ordering v, unspecified) noexcept;
friend constexpr bool operator!=(partial_ordering v, unspecified) noexcept;
friend constexpr bool operator< (partial_ordering v, unspecified) noexcept;
friend constexpr bool operator<=(partial_ordering v, unspecified) noexcept;
friend constexpr bool operator> (partial_ordering v, unspecified) noexcept;
friend constexpr bool operator>=(partial_ordering v, unspecified) noexcept;
friend constexpr bool operator==(unspecified, partial_ordering v) noexcept;
friend constexpr bool operator!=(unspecified, partial_ordering v) noexcept;
friend constexpr bool operator< (unspecified, partial_ordering v) noexcept;
friend constexpr bool operator<=(unspecified, partial_ordering v) noexcept;
friend constexpr bool operator> (unspecified, partial_ordering v) noexcept;
friend constexpr bool operator>=(unspecified, partial_ordering v) noexcept;

};
}

constexpr operator weak_equality() const noexcept;

2 Returns: *this == equivalent ? weak_equality::equivalent
: weak_equality::nonequivalent.

P0768R0: Library Support for the Spaceship (Comparison) Operator 7

constexpr bool operator==(partial_ordering v, unspecified) noexcept;
constexpr bool operator< (partial_ordering v, unspecified) noexcept;
constexpr bool operator<=(partial_ordering v, unspecified) noexcept;
constexpr bool operator> (partial_ordering v, unspecified) noexcept;
constexpr bool operator>=(partial_ordering v, unspecified) noexcept;

3 Returns: false if v.is_ordered is false; otherwise, operator@ returns v.value.cmp @ 0.

constexpr bool operator==(unspecified, partial_ordering v) noexcept;
constexpr bool operator< (unspecified, partial_ordering v) noexcept;
constexpr bool operator<=(unspecified, partial_ordering v) noexcept;
constexpr bool operator> (unspecified, partial_ordering v) noexcept;
constexpr bool operator>=(unspecified, partial_ordering v) noexcept;

4 Returns: false if v.is_ordered is false; otherwise, operator@ returns 0 @ v.value.cmp.

constexpr bool operator!=(partial_ordering v, unspecified) noexcept;
constexpr bool operator!=(unspecified, partial_ordering v) noexcept;

5 Returns: true if v.is_ordered is false; otherwise, returns v.value.cmp != 0.

21.x.2.4 Class weak_ordering [cmp.weakord]

1 The weak_ordering type is typically used as the result type of a three-way comparison operator
that (a) admits all of the six comparison operators, and (b) does not imply substitutability.

namespace std {
class weak_ordering {

int value; // exposition only

// exposition-only constructors
explicit constexpr weak_ordering(eq v) noexcept : value(int(v)) {}
explicit constexpr weak_ordering(ord v) noexcept : value(int(v)) {}

public:
// valid values
static constexpr weak_ordering less {ord::less};
static constexpr weak_ordering equivalent{eq::equivalent};
static constexpr weak_ordering greater {ord::greater};

// conversions
constexpr operator weak_equality() const noexcept;
constexpr operator partial_ordering() const noexcept;

// comparisons
friend constexpr bool operator==(weak_ordering v, unspecified) noexcept;
friend constexpr bool operator!=(weak_ordering v, unspecified) noexcept;
friend constexpr bool operator< (weak_ordering v, unspecified) noexcept;
friend constexpr bool operator<=(weak_ordering v, unspecified) noexcept;
friend constexpr bool operator> (weak_ordering v, unspecified) noexcept;
friend constexpr bool operator>=(weak_ordering v, unspecified) noexcept;
friend constexpr bool operator==(unspecified, weak_ordering v) noexcept;
friend constexpr bool operator!=(unspecified, weak_ordering v) noexcept;
friend constexpr bool operator< (unspecified, weak_ordering v) noexcept;
friend constexpr bool operator<=(unspecified, weak_ordering v) noexcept;

8 P0768R0: Library Support for the Spaceship (Comparison) Operator

friend constexpr bool operator> (unspecified, weak_ordering v) noexcept;
friend constexpr bool operator>=(unspecified, weak_ordering v) noexcept;

};
}

constexpr operator weak_equality() const noexcept;

2 Returns: *this == equivalent ? weak_equality::equivalent
: weak_equality::nonequivalent.

constexpr operator partial_ordering() const noexcept;

3 Returns: *this == equivalent ? partial_ordering::equivalent
: *this == less ? partial_ordering::less : partial_ordering::greater.

constexpr bool operator==(weak_ordering v, unspecified) noexcept;
constexpr bool operator!=(weak_ordering v, unspecified) noexcept;
constexpr bool operator< (weak_ordering v, unspecified) noexcept;
constexpr bool operator<=(weak_ordering v, unspecified) noexcept;
constexpr bool operator> (weak_ordering v, unspecified) noexcept;
constexpr bool operator>=(weak_ordering v, unspecified) noexcept;

4 Returns: v.value @ 0 for operator@.

constexpr bool operator==(unspecified, weak_ordering v) noexcept;
constexpr bool operator!=(unspecified, weak_ordering v) noexcept;
constexpr bool operator< (unspecified, weak_ordering v) noexcept;
constexpr bool operator<=(unspecified, weak_ordering v) noexcept;
constexpr bool operator> (unspecified, weak_ordering v) noexcept;
constexpr bool operator>=(unspecified, weak_ordering v) noexcept;

5 Returns: 0 @ v.value for operator@.

21.x.2.5 Class strong_ordering [cmp.strongord]

1 The strong_ordering type is typically used as the result type of a three-way comparison
operator that (a) admits all of the six comparison operators, and (b) does imply substitutability.

namespace std {
class strong_ordering {

int value; // exposition only

// exposition-only constructors
explicit constexpr strong_ordering(eq v) noexcept : value(int(v)) {}
explicit constexpr strong_ordering(ord v) noexcept : value(int(v)) {}

public:
// valid values
static constexpr strong_ordering less {ord::less};
static constexpr strong_ordering equal {eq::equal};
static constexpr strong_ordering equivalent{eq::equivalent};
static constexpr strong_ordering greater {ord::greater};

// conversions
constexpr operator weak_equality() const noexcept;

P0768R0: Library Support for the Spaceship (Comparison) Operator 9

constexpr operator strong_equality() const noexcept;
constexpr operator partial_ordering() const noexcept;
constexpr operator weak_ordering() const noexcept;

// comparisons
friend constexpr bool operator==(strong_ordering v, unspecified) noexcept;
friend constexpr bool operator!=(strong_ordering v, unspecified) noexcept;
friend constexpr bool operator< (strong_ordering v, unspecified) noexcept;
friend constexpr bool operator<=(strong_ordering v, unspecified) noexcept;
friend constexpr bool operator> (strong_ordering v, unspecified) noexcept;
friend constexpr bool operator>=(strong_ordering v, unspecified) noexcept;
friend constexpr bool operator==(unspecified, strong_ordering v) noexcept;
friend constexpr bool operator!=(unspecified, strong_ordering v) noexcept;
friend constexpr bool operator< (unspecified, strong_ordering v) noexcept;
friend constexpr bool operator<=(unspecified, strong_ordering v) noexcept;
friend constexpr bool operator> (unspecified, strong_ordering v) noexcept;
friend constexpr bool operator>=(unspecified, strong_ordering v) noexcept;

};
}

constexpr operator weak_equality() const noexcept;

2 Returns: *this == equivalent ? weak_equality::equivalent
: weak_equality::nonequivalent.

constexpr operator strong_equality() const noexcept;

3 Returns: *this == equal ? strong_equality::equal : strong_equality::nonequal.

constexpr operator partial_ordering() const noexcept;

4 Returns: *this == equivalent ? partial_ordering::equivalent
: *this == less ? partial_ordering::less : partial_ordering::greater.

constexpr operator weak_ordering() const noexcept;

5 Returns: *this == equivalent ? weak_ordering::equivalent
: *this == less ? weak_ordering::less : weak_ordering::greater.

constexpr bool operator==(strong_ordering v, unspecified) noexcept;
constexpr bool operator!=(strong_ordering v, unspecified) noexcept;
constexpr bool operator< (strong_ordering v, unspecified) noexcept;
constexpr bool operator<=(strong_ordering v, unspecified) noexcept;
constexpr bool operator> (strong_ordering v, unspecified) noexcept;
constexpr bool operator>=(strong_ordering v, unspecified) noexcept;

6 Returns: v.value @ 0 for operator@.

constexpr bool operator==(unspecified, strong_ordering v) noexcept;
constexpr bool operator!=(unspecified, strong_ordering v) noexcept;
constexpr bool operator< (unspecified, strong_ordering v) noexcept;
constexpr bool operator<=(unspecified, strong_ordering v) noexcept;
constexpr bool operator> (unspecified, strong_ordering v) noexcept;
constexpr bool operator>=(unspecified, strong_ordering v) noexcept;

10 P0768R0: Library Support for the Spaceship (Comparison) Operator

7 Returns: 0 @ v.value for operator@.

21.x.3 Class template common_comparison_category [cmp.common]

1 The type common_comparison_category provides an alias for the strongest comparison category
that all of the template arguments can be converted to. [Note: A comparison category type is
stronger than another if they are distinct types and an instance of the former can be converted to
an instance of the latter. — end note]

template<class... Ts>
struct common_comparison_category { using type = see below; };

2 Remarks: The member typedef-name type shall denote the common comparison type
([class.spaceship]) of Ts..., the expanded parameter pack. [Note: This is well-defined even
if the expansion is empty or includes a type that is not a comparison category type. — end note]

21.x.4 Comparison algorithms [cmp.alg]

1 For the purposes of this subclause, to carry out an action in a memberwise fashion means that
the action is to be carried out, in the following order, on corresponding members of the given
objects:

(1.1) — First, the direct base class subobjects, if any, in order of their declaration in the
base-specifier-list.

(1.2) — Then, the non-static data members, if any, in the order of their declaration in the
member-specification. Any subobject of array type is recursively expanded to the
sequence of its elements, in the order of increasing subscript.

template<class T, class U> auto compare_3way(const T& a, const U& b);

2 Effects: Compares two values and produces a result of the strongest applicable comparison
category type:

(2.1) — Returns a <=> b if that expression is well-formed.
(2.2) — Otherwise, if the expressions a == b and a < b are each well-formed and convertible

to bool, returns:
(a) strong_ordering::equal when a == b is true,
(b) strong_ordering::less when a < b is true, or
(c) strong_ordering::greater when neither is true.

(2.3) — Otherwise, if the expression a == b is well-formed and convertible to bool, returns:
(a) strong_equality::equal when a == b is true, or
(b) strong_equality::nonequal when a == b is false.

(2.4) — Otherwise, if is_same_v<T, U> is true, let ri denote the result, of type Ri, of the ith

call in a sequence of memberwise calls compare_3way(a.m, b.m) for each subobject
m of T. Then let R denote the common comparison type ([class.spaceship]) of all
Ri. Further, let r denote the first ri whose result is not convertible to Ri::equivalent
or, if there is no such r, let r instead denote strong_ordering::equivalent. Returns
r converted to R.

(2.5) — Otherwise, the function shall be defined as deleted.

P0768R0: Library Support for the Spaceship (Comparison) Operator 11

template<InputIterator I1, InputIterator I2, class Cmp>
auto lexicographical_compare_3way(I1 b1, I1 e1, I2 b2, I2 e2, Cmp comp)
-> common_comparison_category_t<decltype(comp(*b1,*b2)), strong_ordering>;

3 Requires: Cmp shall be a function object type whose return type is a comparison category type.

4 Effects: Lexicographically compares two ranges and produces a result of the strongest applicable
comparison category type. Equivalent to:

for (; b1 != e1 && b2 != e2; ++b1, void(++b2))
if (auto cmp = comp(*b1,*b2); cmp != 0)

return cmp;
return b1 != e1 ? strong_ordering::greater

: b2 != e2 ? strong_ordering::less : strong_ordering::equal;

template<InputIterator I1, InputIterator I2>
auto lexicographical_compare_3way(I1 b1, I1 e1, I2 b2, I2 e2)

5 Returns:
lexicographical_compare_3way(b1, e1, b2, e2,

compare_3way<decltype(*b1),decltype(*b2)>).

template<class T> strong_ordering strong_order(const T& a, const T& b);

6 Effects: Compares two values and produces a result of type strong_ordering:

(6.1) — If numeric_limits<T>::is_iec559 is true, returns a result of type strong_ordering
that is consistent with the totalOrder operation as specified in ISO/IEC/IEEE 60559.

(6.2) — Otherwise, returns a <=> b if that expression is well-formed and convertible to strong_
ordering.

(6.3) — Otherwise, the function shall be defined as deleted.

template<class T> weak_ordering weak_order(const T& a, const T& b);

7 Effects: Compares two values and produces a result of type weak_ordering:

(7.1) — Returns a <=> b if that expression is well-formed and convertible to weak_ordering.
(7.2) — Otherwise, if the expressions a == b and a < b are each well-formed and convertible

to bool, returns
(a) weak_ordering::equivalent when a == b is true,
(b) weak_ordering::less when a < b is true, or
(c) weak_ordering::greater when neither expression is true.

(7.3) — Otherwise, if it is well-formed to do so, calls weak_order(a.m, b.m) in a memberwise
fashion for each subobject m of T. Let r denote the result of the first call whose result is
not weak_ordering::equivalent. If there is such an r, returns it; otherwise, returns
weak_ordering::equivalent.

(7.4) — Otherwise, the function shall be defined as deleted.

template<class T> partial_ordering partial_order(const T& a, const T& b);

8 Effects: Compares two values and produces a result of type partial_ordering:

(8.1) — If the expression a <=> b is well-formed and produces a result of a type convertible to
partial_ordering, returns the result of evaluating that expression.

(8.2) — Otherwise, if the expressions a == b and a < b are each well-formed and convertible
to bool, returns

12 P0768R0: Library Support for the Spaceship (Comparison) Operator

(a) partial_ordering::equivalent when a == b is true,
(b) partial_ordering::less when a < b is true, or
(c) partial_ordering::greater when neither expression is true.

(8.3) — Otherwise, if it is well-formed to do so, calls partial_order(a.m, b.m) in a mem-
berwise fashion for each subobject m of T. Let r denote the result of the first call
whose result is not partial_ordering::equivalent. If there is such an r, returns it;
otherwise, returns partial_ordering::equivalent.

(8.4) — Otherwise, the function shall be defined as deleted.

template<class T> strong_equality strong_equal(const T& a, const T& b);

9 Effects: Compares two values and produces a result of type strong_equality:

(9.1) — Returns a <=> b if that expression is well-formed and convertible to strong_equality.
(9.2) — Otherwise, if it is well-formed to do so, calls strong_equal(a.m, b.m) in a member-

wise fashion for each subobject m of T. Let r denote the result of the first call whose
result is not strong_equality::equal. If there is such an r, returns it; otherwise,
returns strong_equality::equal.

(9.3) — Otherwise, the function shall be defined as deleted.

template<class T> weak_equality weak_equal(const T& a, const T& b);

10 Effects: Compares two values and produces a result of type weak_equality:

(10.1) — If the expression a <=> b is well-formed and produces a result of a type convertible
to weak_equality, returns the result of evaluating that expression.

(10.2) — Otherwise, if the expression a == b is well-formed and convertible to bool, returns
(a) weak_equality::equivalent when a == b is true, or
(b) weak_equality::nonequivalent when a == b is not true.

(10.3) — Otherwise, if it is well-formed to do so, calls weak_equal(a.m, b.m) in a memberwise
fashion for each subobject m of T. Let r denote the result of the first call whose result
is not weak_equivalent::equal. If there is such an r, returns it; otherwise, returns
weak_equivalent::equivalent.

(10.4) — Otherwise, the function shall be defined as deleted.

4.4 Deprecate rel_ops as follows:

• Create a new subclause [rel_ops] in Annex D.
• Populate that new subclause with the following text as its initial paragraph, followed by

the namespace std::rel_ops synopsis from [utility.syn], followed in turn by (suitably
renumbered) paragraphs 1 through 9 from subclause [operators].

• Remove subclause [operators] and also remove the namespace rel_ops synopsis from
[utility.syn].

1 The header <utility> has the following additions:

P0768R0: Library Support for the Spaceship (Comparison) Operator 13

4.5 Preserve the normative intent of the original [operators]/10 as follows:

• Create a new subclause within [requirements].
• Populate that new subclause with the following text as its initial paragraph, followed by

paragraphs 2 through 9 from the original subclause [operators]:

1 In this library, whenever a declaration is provided for an operator!=, operator>, operator>=,
or operator<=, its requirements and semantics are as follows, unless explicitly specified other-
wise.

5 Acknowledgments

Many thanks to the following gentlemen for their respective comments re this paper’s technical
content: Alisdair Meredith, Casey Carter, Herb Sutter, Jens Maurer, Stephan T. Lavavej, and
Titus Winters.

6 Bibliography

[N4687] Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4687 (post-Toronto mailing), 2017–07–31. http://wg21.link/n4687.

[P0515R2] Herb Sutter, et al.: “Consistent comparison.” ISO/IEC JTC1/SC22/WG21 document P0515R2
(pre-Albuquerque mailing), 2017–09–30. http://wg21.link/p0515r2.

7 Document history

Rev. Date Changes

0 2017-09-30 • Published as P0768R0, pre-Albuquerque.

http://wg21.link/n4687
http://wg21.link/p0515r2

	Title
	Contents
	Abstract
	1 Introduction
	2 Comparison category types
	3 Discussion
	4 Proposed wording
	Header name
	Header description
	Synopsis
	Comparison category types
	– weak_equality
	– strong_equality
	– partial_ordering
	– weak_ordering
	– strong_ordering
	Common comparison category
	Comparison algorithms
	– compare_3way
	– lexicographical_compare_3way
	– strong_order
	– weak_order
	– partial_order
	– strong_equal
	– weak_equal
	Deprecate rel_ops
	Preserve rel_ops' intent

	5 Acknowledgments
	6 Bibliography
	7 Document history

